Citation: | Zhang Dian, An Chengxiang, Zhang Jun, et al. Self-consistent nonlinear numerical simulation of millimeter wave gyro-klystron amplifiers[J]. High Power Laser and Particle Beams, 2021, 33: 093002. doi: 10.11884/HPLPB202133.210129 |
[1] |
Danly B G, Blank M, Calame J P, et al. Development and testing of a high-average power, 94-GHz gyroklystron[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 713-726. doi: 10.1109/27.887710
|
[2] |
罗勇. 回旋速调放大器高频系统及注-波互作用研究[D]. 成都: 电子科技大学, 2003
Luo Yong. High frequency system and beam-wave interaction study of gyro-klystron amplifiers[D]. Chengdu: University of Electronic Science and Technology of China, 2003
|
[3] |
罗勇, 李宏福. 回旋速调管放大器注-波互作用分析[J]. 强激光与粒子束, 2005, 17(5):724-728. (Luo Yong, Li Hongfu. Study on the interaction between electron beam and waves in gyroklystron amplifiers[J]. High Power Laser and Particle Beams, 2005, 17(5): 724-728
|
[4] |
Chu K R. The electron cyclotron maser[J]. Reviews of Modern Physics, 2004, 76(2): 489-540. doi: 10.1103/RevModPhys.76.489
|
[5] |
Levush B, Blank M, Calame J, et al. Modeling and design of millimeter wave gyroklystrons[J]. Physics of Plasmas, 1999, 6(5): 2233-2240. doi: 10.1063/1.873476
|
[6] |
Latham P E, Lawson W, Irwin V. The design of a 100 mw, Ku band second harmonic gyroklystron experiment[J]. IEEE Transactions on Plasma Science, 1994, 22(5): 804-817. doi: 10.1109/27.338296
|
[7] |
Vlasov A N, Antonsen T M, Jr Chernin D P, et al. Simulation of microwave devices with external cavities using MAGY[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1277-1291.
|
[8] |
马俊建, 朱小芳, 金晓林, 等. 回旋速调管放大器时域非线性理论与模拟[J]. 物理学报, 2012, 61:208402. (Ma Junjian, Zhu Xiaofang, Jin Xiaolin, et al. A time-dependent nonlinear theory and simulation for gyroklystron amplifier[J]. Acta Physica Sinica, 2012, 61: 208402 doi: 10.7498/aps.61.208402
|
[9] |
Fliflet A W, Read M E, Chu K R, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. International Journal of Electronics, 1982, 53(6): 505-521. doi: 10.1080/00207218208901545
|
[10] |
刘迎辉, 李宏福, 雷朝军, 等. 输入腔高频场的矩阵分析[J]. 强激光与粒子束, 2007, 19(6):931-933. (Liu Yinghui, Li Hongfu, Lei Chaojun, et al. Analysis of RF field in an input cavity by parameter matrix[J]. High Power Laser and Particle Beams, 2007, 19(6): 931-933
|
[11] |
耿志辉, 刘濮鲲. 回旋速调管放大器输出腔的特性研究[J]. 强激光与粒子束, 2004, 16(11):1445-1448. (Geng Zhihui, Liu Pukun. Characteristic study of output cavity in gyroklystron amplifier[J]. High Power Laser and Particle Beams, 2004, 16(11): 1445-1448
|
[12] |
Geng Zhihui, Liu Pukun. Design of a Ka-band second harmonic gyroklystron amplifier by using a self-consistent nonlinear simulation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 534-540. doi: 10.1109/TPS.2006.875761
|
[13] |
Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
|
[14] |
耿志辉. 毫米波回旋速调管放大器的自洽非线性理论与模拟[D]. 北京: 中国科学院研究生院(电子学研究所), 2005
Geng Zhihui. Self-consistent nonlinear theory and simulation of millimeter wave gyro-klystron amplifier[D]. Beijing: Institute of Electronic, Chinese Academy of Sciences, 2005
|
[15] |
孙迪敏. W波段三次谐波回旋管理论与实验研究[D]. 北京: 清华大学, 2014
Sun Dimin. Theoretical and experimental study of W-band third harmonic gyrotrons[D]. Beijing: Tsinghua University, 2014
|