Peng Yi, Zhang Jingyu, Chen Yixue. Application of improved transmutation trajectory analysis in neutron activation calculation[J]. High Power Laser and Particle Beams, 2017, 29: 036018. doi: 10.11884/HPLPB201729.160194
Citation: Chen Yu, Yue Dongli, Zhong Hui, et al. Time-and-energy combined numerical simulation of pulsed X-ray radiation effect[J]. High Power Laser and Particle Beams, 2021, 33: 104003. doi: 10.11884/HPLPB202133.210145

Time-and-energy combined numerical simulation of pulsed X-ray radiation effect

doi: 10.11884/HPLPB202133.210145
  • Received Date: 2021-04-13
  • Rev Recd Date: 2021-09-22
  • Available Online: 2021-10-16
  • Publish Date: 2021-10-15
  • In the study of pulsed X-ray radiation effect, it is necessary to integrate the information of time dimension into the simulation model, and then realize the numerical simulation of radiation effect based on time energy joint method, which provides a research idea for the simulation of transient pulsed radiation effect. The model of bremsstrahlung shooting is established, and the energy spectrum of outgoing pulsed X-ray is calculated. Combined with the radiation effect simulation model of radiation object, the energy deposition of alumina ceramic sample at different time and different incident depth was obtained.
  • [1]
    Wetzer J M, Wouters P A A F. HV design of vacuum components[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(2): 202-209. doi: 10.1109/94.388241
    [2]
    Saito Y, Matuda N, Anami S, et al. Breakdown of alumina RF windows[J]. Review of Scientific Instruments, 1989, 60(7): 1736-1739. doi: 10.1063/1.1140942
    [3]
    Vlieks A E, Allen M A, Callin R S, et al. Breakdown phenomena in high-power klystrons[J]. IEEE Transactions on Electrical Insulation, 1989, 24(6): 1023-1028. doi: 10.1109/14.46331
    [4]
    Kalbreier W, Goddard B. Radiation-triggered breakdown phenomena in high-energy e+e- colliders[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 444-453. doi: 10.1109/14.231524
    [5]
    张雨琦. 强脉冲X射线下介质材料辐照感应电导率研究[D]. 西安: 西安交通大学, 2019

    Zhang Yuqi. Research on induced conductivity of dielectric materials irradiated by intense pulse X-ray[D]. Xi’an: Xi’an Jiaotong University, 2019
    [6]
    来定国, 张永民, 李进玺, 等. 强流电子束轫致辐射复合薄靶设计[J]. 强激光与粒子束, 2013, 25(6):1396-1400. (Lai Dingguo, Zhang Yongmin, Li Jinxi, et al. Design of bremsstrahlung composite thin converter for high current electron beams[J]. High Power Laser and Particle Beams, 2013, 25(6): 1396-1400 doi: 10.3788/HPLPB20132506.1396
    [7]
    邱爱慈. 脉冲X射线模拟源技术的发展[J]. 中国工程科学, 2000, 2(9): 24-28.

    Qiu Aici. Development of pulse X-ray analog source technology[J]. Chinese Engineering Science, 2000, 2(9): 24-28
    [8]
    苏兆锋, 杨海亮, 邱爱慈, 等. 高能脉冲X射线能谱测量[J]. 物理学报, 2010, 59(11):7729-7735. (Su Zhaofeng, Yang Hailiang, Qiu Aici, et al. High-energy pulsed X-ray energy spectrum measurement[J]. Acta Physica Sinica, 2010, 59(11): 7729-7735 doi: 10.7498/aps.59.7729
    [9]
    来定国, 张永民, 李进玺, 等. 脉冲硬X射线能谱软化方法数值分析[J]. 原子能科学技术, 2014, 8(2):336-340. (Lai Dingguo, Zhang Yongmin, Li Jinxi, et al. Numerical analysis of softening method of pulse hard X-ray energy spectrum[J]. Atomic Energy Science and Technology, 2014, 8(2): 336-340 doi: 10.7538/yzk.2014.48.02.0336
    [10]
    苏兆锋, 来定国, 邱孟通, 等. 15~600 keV脉冲硬X射线能谱测量[J]. 强激光与粒子束, 2020, 32:035005. (Su Zhaofeng, Lai Dingguo, Qiu Mengtong, et al. Energy spectrum measurement for pulsed hard X-ray from 15 keV to 600 keV[J]. High Power Laser and Particle Beams, 2020, 32: 035005 doi: 10.11884/HPLPB202032.190354
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [4]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [5]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [6]Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(07): 1747-1750. doi: 10.3788/HPLPB20132507.1747
    [7]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]zhong shaopeng, zhao minghua, wang baoliang. Design and test of sub-harmonic cavity's coupler for 150 MeV linac of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [15]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [16]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [17]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 70.7 %META: 70.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.5 %其他: 0.5 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Switzerland: 0.1 %Switzerland: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 2.0 %[]: 2.0 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %内江: 0.1 %内江: 0.1 %北京: 14.1 %北京: 14.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南通: 0.2 %南通: 0.2 %卢布林: 0.3 %卢布林: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %山景: 0.1 %山景: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德里: 0.2 %德里: 0.2 %德黑兰: 0.6 %德黑兰: 0.6 %忠清北道: 0.1 %忠清北道: 0.1 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %毕晓普: 0.1 %毕晓普: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.3 %衢州: 0.3 %西孟加拉邦: 0.2 %西孟加拉邦: 0.2 %西宁: 45.2 %西宁: 45.2 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaIndiaKorea Republic ofPakistanSwitzerlandTaiwan, ChinaUnited States[]上海中山临汾丹东丽水内江北京十堰南京南平南通卢布林台北台州合肥咸阳哈尔科夫哥伦布嘉兴大田广域天津孟买安康宣城山景巴中常州广州张家口德里德黑兰忠清北道成都新乡新德里无锡昆明晋城普洱杭州武汉毕晓普汉诺威深圳温州湖州漯河珠海石家庄福州秦皇岛纽约聊城芒廷维尤芝加哥衢州西孟加拉邦西宁西安贵阳运城郑州重庆长沙长治阳泉黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (920) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return