Citation: | Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159 |
[1] |
Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion[M]. New York: Oxford University, 2004.
|
[2] |
Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491. doi: 10.1063/1.1578638
|
[3] |
Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Phys Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
|
[4] |
Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056314. doi: 10.1063/1.4803907
|
[5] |
Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas[J]. Phys Rev Lett, 2013, 111: 025001. doi: 10.1103/PhysRevLett.111.025001
|
[6] |
Rosen M D, Scott H A, Hinkel D E, et. al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Phys, 2011, 7: 180-190. doi: 10.1016/j.hedp.2011.03.008
|
[7] |
Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. Phys Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
|
[8] |
Thomson J J. Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma[J]. Nucl Fusion, 1975, 15: 237-247. doi: 10.1088/0029-5515/15/2/008
|
[9] |
Obenschain S P, Luhmann N C, Jr Greiling P T. Effects of finite bandwidth driver pumps on the parametric-decay instability[J]. Phys Rev Lett, 1976, 36: 1309-1312. doi: 10.1103/PhysRevLett.36.1309
|
[10] |
Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency[J]. Phys Fluids B, 1990, 2: 2525-2527. doi: 10.1063/1.859374
|
[11] |
Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Phys Fluids B, 1991, 3: 2882-2888. doi: 10.1063/1.859921
|
[12] |
Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Phys Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
|
[13] |
杨冬. 啁啾激光抑制等离子体参量不稳定性的研究[D]. 绵阳: 中国工程物理研究院, 2009.
Yang Dong. The study of suppressing laser-plasma parametric in stablities using chirped laser[D].Mianyang: China Academy of Engineering Physics, 2009.
|
[14] |
Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Phys Plasmas, 1995, 2(11): 4285-4296. doi: 10.1063/1.871053
|
[15] |
Montgomery D S, Moody J D, Baldis H A, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas[J]. Phys Plasmas, 1996, 3: 1728-1736. doi: 10.1063/1.871682
|
[16] |
Zhao Y, Yu L L, Zheng J, et al. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma[J]. Phys Plasmas, 2015, 22: 052119. doi: 10.1063/1.4921659
|
[17] |
Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers[J]. Phys Plasmas, 2021, 28: 032103. doi: 10.1063/5.0037869
|
[18] |
Zhao Y, Weng S M, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Phys Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
|
[19] |
Liu Z J, Chen Y H, Zheng C Y, et al. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 082704. doi: 10.1063/1.4995474
|
[20] |
Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Phys Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
|
[21] |
Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004. doi: 10.3788/HPLPB20152703.32004
|
[22] |
Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007. doi: 10.3788/HPLPB20152703.32007
|
[23] |
Serduke F J D, Minguez E, Davidson S J, et al. WorkOp-IV summary: lessons from iron opacities[J]. J. Quant Spectrosc Radiat Transfer, 2000, 65: 527-541. doi: 10.1016/S0022-4073(99)00094-1
|
[1] | Han Caozheng, Wang Wubin, Zhao Wei, Chen Ruitao, Ma Xingwang, Li Yanling, Bai Jiaqi. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36(12): 123001. doi: 10.11884/HPLPB202436.240219 |
[2] | Zhang Jingqi, Qin Feng, Gao Yuan, Zhong Shouhong, Wang Zhen. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004. doi: 10.11884/HPLPB202335.220257 |
[3] | Fan Yuqing, Cheng Erwei, Wei Ming, Zhang Qinglong, Chen Yazhou. Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft[J]. High Power Laser and Particle Beams, 2019, 31(12): 123201. doi: 10.11884/HPLPB201931.190268 |
[4] | Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator[J]. High Power Laser and Particle Beams, 2019, 31(6): 063205. doi: 10.11884/HPLPB201931.190057 |
[5] | Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203. doi: 10.11884/HPLPB201931.190035 |
[6] | Wang Xiangyu, Fan Yajun, Qiao Hanqing, Lu Yanlei, Zhu Yufeng, Xia Wenfeng, Zhang Xingjia. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31(11): 115001. doi: 10.11884/HPLPB201931.190125 |
[7] | Wang Yajie, He Pengjun, Jing Xiaopeng, Tie Weihao, Xie Jiangyuan, Zhao Chengguang. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30(9): 095005. doi: 10.11884/HPLPB201830.170398 |
[8] | Wu Huancheng, Hu Jinguang, Zhong Longquan, Lin Jiangchuan. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29(09): 093203. doi: 10.11884/HPLPB201729.170088 |
[9] | Zhang Xijun, Zhang Liting, Wang Shuping, Zhao Min. Effect of length of transmission line on performance test of electrostatic discharge protection device[J]. High Power Laser and Particle Beams, 2017, 29(10): 103205. doi: 10.11884/HPLPB201729.170156 |
[10] | Li Yong, Xie Haiyan, Yang Zhiqiang, Xia Hongfu, Xuan Chun, Wang Jianguo. Parameter extraction of transient voltage suppressor diode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033202. doi: 10.11884/HPLPB201628.033202 |
[11] | Yang Cheng, Liu Peiguo, Liu Jibin, Zhou Dongming, Li Gaosheng. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(04): 1045-1049. |
[12] | zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[13] | xiong ling-ling, lü bai-da. Theoretical models describing far-field intensity distributions of laser diode[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[14] | qi shu-feng, liu shang-he, liu hong-bing, yang jie. Latent failure of 2SC3356 caused by electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[15] | he qi-yuan, liu shang-he, xu xiao-ying, wang shao-guang, chen jing-ping. Influence of approaching speed on air electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- . |
[16] | yang jie, wang chang-he, liu shang-he. Electromagnetic pulse sensitive ports of micro-wave low-noise transistors[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- . |
[17] | quan lin, zhang yong-min, tu jing, chen zhi-hua, lai ding-guo, fan ya-jun, shao hao. Stability of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- . |
[18] | bi zeng-jun, sheng song-lin, sun chi, liu shang-he. A numerical model of electromagnetic fields generated by electrostatic discharge spark[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- . |
[19] | hou min-sheng, wang shu-ping. Simulator of electromagnetism pulse produced during electrostatic discharge[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- . |