Liu Huilan, Tang Yichuang, Zhi Yinzhou, et al. Parameters analysis of triangular wave modulation in resonator micro optic gyro[J]. High Power Laser and Particle Beams, 2015, 27: 024148. doi: 10.11884/HPLPB201527.024148
Citation: Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159

Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights

doi: 10.11884/HPLPB202133.210159
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-06-08
  • Available Online: 2021-10-08
  • Publish Date: 2021-10-15
  • To study the stimulated Brillouin scattering (SBS) and stimulated Raman scattering in inertial confinement fusion (ICF) hohlraum excited by multi-color incoherent light, in this paper a one-dimensional steady-state model is introduced and implemented by a numerical program. The physical pictures in which the stimulated scattering excited by individual lightrays can be coupled through sharing electrostatic wave and the physical factors affecting the spectrum of backward scattered light are analyzed. The simulation of SBS in a golden cylinderical hohlraum excited by two-color light with wavelength separation 0.3nm shows that: SBS can be effectively suppressed by the two-color light, the spectrum of SBS splits into two peaks with separation of 0.3 nm, the SBS light corresponding to incident light of longer wavelength gets higher gain, and if the total intensity and bandwidth of lasers are both fixed, there exists a best number of beamlets to suppress SBS.
  • [1]
    Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion[M]. New York: Oxford University, 2004.
    [2]
    Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491. doi: 10.1063/1.1578638
    [3]
    Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Phys Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
    [4]
    Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056314. doi: 10.1063/1.4803907
    [5]
    Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas[J]. Phys Rev Lett, 2013, 111: 025001. doi: 10.1103/PhysRevLett.111.025001
    [6]
    Rosen M D, Scott H A, Hinkel D E, et. al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Phys, 2011, 7: 180-190. doi: 10.1016/j.hedp.2011.03.008
    [7]
    Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. Phys Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
    [8]
    Thomson J J. Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma[J]. Nucl Fusion, 1975, 15: 237-247. doi: 10.1088/0029-5515/15/2/008
    [9]
    Obenschain S P, Luhmann N C, Jr Greiling P T. Effects of finite bandwidth driver pumps on the parametric-decay instability[J]. Phys Rev Lett, 1976, 36: 1309-1312. doi: 10.1103/PhysRevLett.36.1309
    [10]
    Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency[J]. Phys Fluids B, 1990, 2: 2525-2527. doi: 10.1063/1.859374
    [11]
    Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Phys Fluids B, 1991, 3: 2882-2888. doi: 10.1063/1.859921
    [12]
    Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Phys Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
    [13]
    杨冬. 啁啾激光抑制等离子体参量不稳定性的研究[D]. 绵阳: 中国工程物理研究院, 2009.

    Yang Dong. The study of suppressing laser-plasma parametric in stablities using chirped laser[D].Mianyang: China Academy of Engineering Physics, 2009.
    [14]
    Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Phys Plasmas, 1995, 2(11): 4285-4296. doi: 10.1063/1.871053
    [15]
    Montgomery D S, Moody J D, Baldis H A, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas[J]. Phys Plasmas, 1996, 3: 1728-1736. doi: 10.1063/1.871682
    [16]
    Zhao Y, Yu L L, Zheng J, et al. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma[J]. Phys Plasmas, 2015, 22: 052119. doi: 10.1063/1.4921659
    [17]
    Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers[J]. Phys Plasmas, 2021, 28: 032103. doi: 10.1063/5.0037869
    [18]
    Zhao Y, Weng S M, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Phys Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
    [19]
    Liu Z J, Chen Y H, Zheng C Y, et al. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 082704. doi: 10.1063/1.4995474
    [20]
    Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Phys Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
    [21]
    Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004. doi: 10.3788/HPLPB20152703.32004
    [22]
    Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007. doi: 10.3788/HPLPB20152703.32007
    [23]
    Serduke F J D, Minguez E, Davidson S J, et al. WorkOp-IV summary: lessons from iron opacities[J]. J. Quant Spectrosc Radiat Transfer, 2000, 65: 527-541. doi: 10.1016/S0022-4073(99)00094-1
  • Relative Articles

    [1]Han Caozheng, Wang Wubin, Zhao Wei, Chen Ruitao, Ma Xingwang, Li Yanling, Bai Jiaqi. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36(12): 123001. doi: 10.11884/HPLPB202436.240219
    [2]Zhang Jingqi, Qin Feng, Gao Yuan, Zhong Shouhong, Wang Zhen. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004. doi: 10.11884/HPLPB202335.220257
    [3]Fan Yuqing, Cheng Erwei, Wei Ming, Zhang Qinglong, Chen Yazhou. Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft[J]. High Power Laser and Particle Beams, 2019, 31(12): 123201. doi: 10.11884/HPLPB201931.190268
    [4]Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator[J]. High Power Laser and Particle Beams, 2019, 31(6): 063205. doi: 10.11884/HPLPB201931.190057
    [5]Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203. doi: 10.11884/HPLPB201931.190035
    [6]Wang Xiangyu, Fan Yajun, Qiao Hanqing, Lu Yanlei, Zhu Yufeng, Xia Wenfeng, Zhang Xingjia. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31(11): 115001. doi: 10.11884/HPLPB201931.190125
    [7]Wang Yajie, He Pengjun, Jing Xiaopeng, Tie Weihao, Xie Jiangyuan, Zhao Chengguang. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30(9): 095005. doi: 10.11884/HPLPB201830.170398
    [8]Wu Huancheng, Hu Jinguang, Zhong Longquan, Lin Jiangchuan. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29(09): 093203. doi: 10.11884/HPLPB201729.170088
    [9]Zhang Xijun, Zhang Liting, Wang Shuping, Zhao Min. Effect of length of transmission line on performance test of electrostatic discharge protection device[J]. High Power Laser and Particle Beams, 2017, 29(10): 103205. doi: 10.11884/HPLPB201729.170156
    [10]Li Yong, Xie Haiyan, Yang Zhiqiang, Xia Hongfu, Xuan Chun, Wang Jianguo. Parameter extraction of transient voltage suppressor diode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033202. doi: 10.11884/HPLPB201628.033202
    [11]Yang Cheng, Liu Peiguo, Liu Jibin, Zhou Dongming, Li Gaosheng. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(04): 1045-1049.
    [12]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]xiong ling-ling, lü bai-da. Theoretical models describing far-field intensity distributions of laser diode[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [14]qi shu-feng, liu shang-he, liu hong-bing, yang jie. Latent failure of 2SC3356 caused by electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [15]he qi-yuan, liu shang-he, xu xiao-ying, wang shao-guang, chen jing-ping. Influence of approaching speed on air electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [16]yang jie, wang chang-he, liu shang-he. Electromagnetic pulse sensitive ports of micro-wave low-noise transistors[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [17]quan lin, zhang yong-min, tu jing, chen zhi-hua, lai ding-guo, fan ya-jun, shao hao. Stability of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [18]bi zeng-jun, sheng song-lin, sun chi, liu shang-he. A numerical model of electromagnetic fields generated by electrostatic discharge spark[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [19]hou min-sheng, wang shu-ping. Simulator of electromagnetism pulse produced during electrostatic discharge[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 王淼,李嘉豪,汤浩,郭亚. ESD保护电路在HDMI板级信号完整性中的影响分析及其布局优化研究. 现代电子技术. 2024(08): 68-74 .
    2. 付路,阎照文,刘玉竹,苏丽轩. 基于分段线性模型针对传输线脉冲瞬态干扰信号的芯片协同防护设计方法. 电子与信息学报. 2023(09): 3263-3271 .
    3. 付路,阎照文,刘玉竹,苏丽轩. 芯片传导瞬态电磁干扰下的防护特性研究. 安全与电磁兼容. 2022(04): 38-42+66 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 76.2 %META: 76.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 0.1 %China: 0.1 %Hamtramck: 0.2 %Hamtramck: 0.2 %India: 0.1 %India: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.3 %上海: 0.3 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %北京: 22.2 %北京: 22.2 %台州: 0.4 %台州: 0.4 %咸阳: 0.1 %咸阳: 0.1 %安康: 0.2 %安康: 0.2 %巴拿马城: 0.1 %巴拿马城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 0.6 %成都: 0.6 %新乡: 0.3 %新乡: 0.3 %昆明: 0.9 %昆明: 0.9 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.5 %江门: 0.5 %深圳: 11.0 %深圳: 11.0 %湖州: 0.4 %湖州: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.6 %衢州: 0.6 %西宁: 40.1 %西宁: 40.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.0 %郑州: 1.0 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %雅安: 0.1 %雅安: 0.1 %首尔: 0.2 %首尔: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaHamtramckIndiaUnited KingdomUnited States[]上海中山临汾丹东丽水伊犁北京台州咸阳安康巴拿马城布鲁塞尔常州常德广州弗吉张家口成都新乡昆明普洱杭州桂林桃园武汉江门深圳湖州福州秦皇岛红河约翰内斯堡绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城连云港郑州都伯林重庆长沙长治雅安首尔马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1152) PDF downloads(92) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return