Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159
Citation: Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159

Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights

doi: 10.11884/HPLPB202133.210159
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-06-08
  • Available Online: 2021-10-08
  • Publish Date: 2021-10-15
  • To study the stimulated Brillouin scattering (SBS) and stimulated Raman scattering in inertial confinement fusion (ICF) hohlraum excited by multi-color incoherent light, in this paper a one-dimensional steady-state model is introduced and implemented by a numerical program. The physical pictures in which the stimulated scattering excited by individual lightrays can be coupled through sharing electrostatic wave and the physical factors affecting the spectrum of backward scattered light are analyzed. The simulation of SBS in a golden cylinderical hohlraum excited by two-color light with wavelength separation $ 0.3\;\mathrm{n}\mathrm{m} $ shows that: SBS can be effectively suppressed by the two-color light, the spectrum of SBS splits into two peaks with separation of 0.3 nm, the SBS light corresponding to incident light of longer wavelength gets higher gain, and if the total intensity and bandwidth of lasers are both fixed, there exists a best number of beamlets to suppress SBS.
  • loading
  • [1]
    Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion[M]. New York: Oxford University, 2004.
    [2]
    Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491. doi: 10.1063/1.1578638
    [3]
    Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Phys Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
    [4]
    Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056314. doi: 10.1063/1.4803907
    [5]
    Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas[J]. Phys Rev Lett, 2013, 111: 025001. doi: 10.1103/PhysRevLett.111.025001
    [6]
    Rosen M D, Scott H A, Hinkel D E, et. al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Phys, 2011, 7: 180-190. doi: 10.1016/j.hedp.2011.03.008
    [7]
    Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. Phys Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
    [8]
    Thomson J J. Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma[J]. Nucl Fusion, 1975, 15: 237-247. doi: 10.1088/0029-5515/15/2/008
    [9]
    Obenschain S P, Luhmann N C, Jr Greiling P T. Effects of finite bandwidth driver pumps on the parametric-decay instability[J]. Phys Rev Lett, 1976, 36: 1309-1312. doi: 10.1103/PhysRevLett.36.1309
    [10]
    Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency[J]. Phys Fluids B, 1990, 2: 2525-2527. doi: 10.1063/1.859374
    [11]
    Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Phys Fluids B, 1991, 3: 2882-2888. doi: 10.1063/1.859921
    [12]
    Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Phys Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
    [13]
    杨冬. 啁啾激光抑制等离子体参量不稳定性的研究[D]. 绵阳: 中国工程物理研究院, 2009.

    Yang Dong. The study of suppressing laser-plasma parametric in stablities using chirped laser[D].Mianyang: China Academy of Engineering Physics, 2009.
    [14]
    Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Phys Plasmas, 1995, 2(11): 4285-4296. doi: 10.1063/1.871053
    [15]
    Montgomery D S, Moody J D, Baldis H A, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas[J]. Phys Plasmas, 1996, 3: 1728-1736. doi: 10.1063/1.871682
    [16]
    Zhao Y, Yu L L, Zheng J, et al. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma[J]. Phys Plasmas, 2015, 22: 052119. doi: 10.1063/1.4921659
    [17]
    Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers[J]. Phys Plasmas, 2021, 28: 032103. doi: 10.1063/5.0037869
    [18]
    Zhao Y, Weng S M, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Phys Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
    [19]
    Liu Z J, Chen Y H, Zheng C Y, et al. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 082704. doi: 10.1063/1.4995474
    [20]
    Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Phys Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
    [21]
    Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004. doi: 10.3788/HPLPB20152703.32004
    [22]
    Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007. doi: 10.3788/HPLPB20152703.32007
    [23]
    Serduke F J D, Minguez E, Davidson S J, et al. WorkOp-IV summary: lessons from iron opacities[J]. J. Quant Spectrosc Radiat Transfer, 2000, 65: 527-541. doi: 10.1016/S0022-4073(99)00094-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1072) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return