Citation: | Wang Qiang, Liu Zhanjun, Zheng Chunyang, et al. Analysis of stimulated Brillouin scattering in ICF hohlraum excited by multi-color incoherent lights[J]. High Power Laser and Particle Beams, 2021, 33: 102001. doi: 10.11884/HPLPB202133.210159 |
[1] |
Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion[M]. New York: Oxford University, 2004.
|
[2] |
Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339-491. doi: 10.1063/1.1578638
|
[3] |
Town R P J, Rosen M D, Michel P A, et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments[J]. Phys Plasmas, 2011, 18: 056302. doi: 10.1063/1.3562552
|
[4] |
Kline J L, Callahan D A, Glenzer S H, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Phys Plasmas, 2013, 20: 056314. doi: 10.1063/1.4803907
|
[5] |
Moody J D, Strozzi D J, Divol L, et al. Raman backscatter as a remote laser power sensor in high-energy-density plasmas[J]. Phys Rev Lett, 2013, 111: 025001. doi: 10.1103/PhysRevLett.111.025001
|
[6] |
Rosen M D, Scott H A, Hinkel D E, et. al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums[J]. High Energy Density Phys, 2011, 7: 180-190. doi: 10.1016/j.hedp.2011.03.008
|
[7] |
Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. Phys Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
|
[8] |
Thomson J J. Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma[J]. Nucl Fusion, 1975, 15: 237-247. doi: 10.1088/0029-5515/15/2/008
|
[9] |
Obenschain S P, Luhmann N C, Jr Greiling P T. Effects of finite bandwidth driver pumps on the parametric-decay instability[J]. Phys Rev Lett, 1976, 36: 1309-1312. doi: 10.1103/PhysRevLett.36.1309
|
[10] |
Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency[J]. Phys Fluids B, 1990, 2: 2525-2527. doi: 10.1063/1.859374
|
[11] |
Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Phys Fluids B, 1991, 3: 2882-2888. doi: 10.1063/1.859921
|
[12] |
Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Phys Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
|
[13] |
杨冬. 啁啾激光抑制等离子体参量不稳定性的研究[D]. 绵阳: 中国工程物理研究院, 2009.
Yang Dong. The study of suppressing laser-plasma parametric in stablities using chirped laser[D].Mianyang: China Academy of Engineering Physics, 2009.
|
[14] |
Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Phys Plasmas, 1995, 2(11): 4285-4296. doi: 10.1063/1.871053
|
[15] |
Montgomery D S, Moody J D, Baldis H A, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas[J]. Phys Plasmas, 1996, 3: 1728-1736. doi: 10.1063/1.871682
|
[16] |
Zhao Y, Yu L L, Zheng J, et al. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma[J]. Phys Plasmas, 2015, 22: 052119. doi: 10.1063/1.4921659
|
[17] |
Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers[J]. Phys Plasmas, 2021, 28: 032103. doi: 10.1063/5.0037869
|
[18] |
Zhao Y, Weng S M, Chen M, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Phys Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
|
[19] |
Liu Z J, Chen Y H, Zheng C Y, et al. Controlling stimulated Raman scattering by two-color light in inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 082704. doi: 10.1063/1.4995474
|
[20] |
Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Phys Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
|
[21] |
Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004. doi: 10.3788/HPLPB20152703.32004
|
[22] |
Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007. doi: 10.3788/HPLPB20152703.32007
|
[23] |
Serduke F J D, Minguez E, Davidson S J, et al. WorkOp-IV summary: lessons from iron opacities[J]. J. Quant Spectrosc Radiat Transfer, 2000, 65: 527-541. doi: 10.1016/S0022-4073(99)00094-1
|
[1] | Zhang Yong, Liu Zhen, Ruiyu Zhu, Yan Keping. Experimental study on Escherichia coli treatment by pulsed xenon lamp[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240229 |
[2] | Chen Peng, Mao Daichun, Chen Siyu, Chen Nuo, Zhang Yilong. Design of short-arc xenon flashlamp power supply based on flyback topology and RC isolation trigger network[J]. High Power Laser and Particle Beams, 2021, 33(3): 035002. doi: 10.11884/HPLPB202133.200316 |
[3] | Chang Lihua, Wang Xu, Wen Weifeng, Song Zhenfei, Wang Wei, Ran Maojie, He Hui, Gao Peng. New development of laser illumination technology for high-speed photography[J]. High Power Laser and Particle Beams, 2018, 30(4): 040101. doi: 10.11884/HPLPB201830.180042 |
[4] | Li Bo, Li Boting, Huang Bin, Zhang Xin, Li Xiqin, Zhao Juan. Design of high reliability pulse xenon lamp power supply[J]. High Power Laser and Particle Beams, 2017, 29(06): 065004. doi: 10.11884/HPLPB201729.160468 |
[5] | Ren Qingyi, Chen Min, Huang Bin, Ding Mingjun, Xie Min. Control system and Xe-flash lamp power supply of high speed imaging for detonation experiments[J]. High Power Laser and Particle Beams, 2015, 27(05): 055001. doi: 10.11884/HPLPB201527.055001 |
[6] | Chang Lihua, He Hui, Wen Weifeng, Gu Zhuowei, Li Zeren, Peng Qixian, Wang Xu, Li Jian, Qian Weixin, Liu Ningwen, Zhao Xincai, Wang Wei. Ultrahigh-speed simultaneous framing and streak photography of magnetic flux compression by explosive cylindrical implosion[J]. High Power Laser and Particle Beams, 2015, 27(11): 115002. doi: 10.11884/HPLPB201527.115002 |
[7] | Yang Zefeng, Mo Yongpeng, Jia Shenli, Liu Jianjun, Li Haibing, Yao Xueling, Li Xingwen. Experimental study on influence of cut current tail on xenon flashlamp work performance[J]. High Power Laser and Particle Beams, 2014, 26(09): 092004. doi: 10.11884/HPLPB201426.092004 |
[8] | Liu Jianjun, Li Haibing, Guo Xiangchao, Wu Ruihua, Shao Ruoyan, Liang Hairong, Lin Wenzheng, Hu Lili. Thermal damage mechanism of xenon lamp silica envelope during high-power discharge[J]. High Power Laser and Particle Beams, 2014, 26(08): 082004. doi: 10.11884/HPLPB201426.082004 |
[9] | Li Xiqin, Zhao Juan, Wu Hongguang, Liu Yuntao, Ding Mingjun. Design of xenon flash lamp supply adopting integrally triggering and pre-ionization[J]. High Power Laser and Particle Beams, 2014, 26(07): 075004. doi: 10.11884/HPLPB201426.075004 |
[10] | Li Jie, Li Xi, Xie Yutong, Wang Yuan, Jiang Xiaoguo, Long Jidong, Zhang Linwen. High speed imaging of DBD excited by sub-microsecond pulse power at atmospheric air[J]. High Power Laser and Particle Beams, 2014, 26(04): 045035. doi: 10.11884/HPLPB201426.045035 |
[11] | Shao Tao, Zhang Cheng, Li Wenfeng, Yu Yang, Zhang Dongdong, Yan Ping. High speed imaging of nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. High Power Laser and Particle Beams, 2012, 24(03): 612-616. doi: 10.3788/HPLPB20122403.0612 |
[12] | Liu Ningwen, Chang Lihua, Xiao Zhengfei, Li Jian, Zhao Xincai, Shang Changshui, Tian Jianhua. Measuring gating time of gated image intensifier[J]. High Power Laser and Particle Beams, 2012, 24(10): 2447-2450. doi: 10.3788/HPLPB20122410.2447 |
[13] | Jia Shenli, Li Xingwen, Li Rui, Liu JianJun, Li Haibing. Characteristics of plasma channel in high power pulsed xenon flashlamps[J]. High Power Laser and Particle Beams, 2012, 24(01): 248-252. |
[14] | Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479 |
[15] | Zhang Chu, Lin Dejiang, Shen Hongbin, Xu Chunmei, Chen Xiaohan. Effect of capacitor loss on discharging characteristics of xenon flash lamp[J]. High Power Laser and Particle Beams, 2012, 24(10): 2474-2478. doi: 10.3788/HPLPB20122410.2474 |
[16] | ma yongbo, peng shuming, long xinggui, fu xuemei, cao qingwei, yang benfu, yan dengyun. Influencing factors of life of high power linear xenon-filled flash lamp[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[17] | wen ming, hong yan-ji, wang jun, yang jian. High speed photography measurement of impulse coupling coefficient based on compound pendulum model[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[18] | zhu jun, zhang lin-wen, long ji-dong, li jing, yu hai-jun, shang chang-shui, li jian. Measurement and simulation of the back-ejecta of tantalum target material impacted by high intensity current pulse electron beam[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- . |
[19] | yang wen yuan, ding wu. A novel high power and high frequency coaxial transittime oscillator[J]. High Power Laser and Particle Beams, 2003, 15(04): 0- . |
[20] | chang li-hua, wang wei, liu ning-wen, yang li-bing, shang chang-shui, li jian. Study on gas-puff Z-pinch by high speed photography[J]. High Power Laser and Particle Beams, 2003, 15(04): 0- . |
1. | 王桔,饶大幸,贺瑞敬,高妍琦,崔勇,赵晓晖,史海涛,隋展,黄昌清. 幅度调制器对宽带低相干光时频特性的影响. 强激光与粒子束. 2023(05): 26-32 . ![]() |