Wang Ke, Duan Yantao, Shi Lihua, et al. A pulsed magnetic field sensor based on dual-loop differential structure[J]. High Power Laser and Particle Beams, 2022, 34: 043003. doi: 10.11884/HPLPB202234.210337
Citation: Wang Yan, Yin Jie, Dong Yinghuai, et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160

Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field

doi: 10.11884/HPLPB202133.210160
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-08-26
  • Available Online: 2021-09-24
  • Publish Date: 2021-09-15
  • In view of the influence of ultrasonic vibration on the temperature field of laser ablation of aluminum surface, a three-dimensional numerical model was established, and the temperature field of ultrasonic vibration assisted laser ablation of metal aluminum was numerically simulated by using ANSYS software. By comparing the change of temperature field of two adjacent spots with time under different laser scanning speed and ultrasonic vibration frequency, it is found that the temperature, size and position of adjacent spots all change. The numerical results show that with the increase of laser scanning speed, the maximum temperature of laser scanning to the same position decreases, and the depth of craters becomes shallow. Due to the displacement of medium molecules caused by ultrasonic vibration, when the ultrasonic vibration frequency is 15 kHz, the temperature of the crater decreases significantly and the crater position is misplaced in the direction of vibration, which is conducive to the generation of a new laser action trajectory. These experimental results have a certain guiding effect on the design of ultrasonic vibration assisted laser control parameters.
  • [1]
    Martin D J, Wells I T, Goodwin C R. Physics of ultrasound[J]. Physics, 2015: 132-135.
    [2]
    Marvin C, Ziskin M M. Fundamental physics of ultrasound and its propagation in tissue[J]. Radio Graphics, 1993, 13: 705-709.
    [3]
    沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21):2542-2546. (Shen Cheng, Zou Ping, Kang Di, et al. Experimental study on laser drilling assisted by ultrasonic vibrating lens[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546 doi: 10.3969/j.issn.1004-132X.2020.21.004
    [4]
    Wang Houxiao, Zhu Sukai, Xu Guoxiang, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139.
    [5]
    Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 2015, 4: 1-5. doi: 10.1016/j.mfglet.2015.01.002
    [6]
    Li Meiyan, Zhang Qi, Han Bin, et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 2020, 125: 105848. doi: 10.1016/j.optlaseng.2019.105848
    [7]
    Wu Dongjiang, Guo Minhai, Ma Guangyi, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209. doi: 10.1016/j.matlet.2014.11.058
    [8]
    徐家乐, 周建忠, 谭文胜, 等. 超声振动辅助激光熔覆钴基合金涂层的抗高温氧化性能[J]. 中国激光, 2019, 46(1):0102006. (Xu Jiale, Zhou Jianzhong, Tan Wensheng, et al. High temperature oxidation resistance of laser cladding cobalt-based alloy coating assisted by ultrasonic vibration[J]. Chinese Journal of Lasers, 2019, 46(1): 0102006
    [9]
    张朋波, 秦颖, 赵纪军, 等. 纳秒激光烧蚀铝材料的二维数值模拟[J]. 物理学报, 2010, 59(10):7120-7128. (Zhang Pengbo, Qin Ying, Zhao Jijun, et al. Two-dimensional numerical simulation of nanosecond laser ablation of aluminum materials[J]. Acta Physica Sinica, 2010, 59(10): 7120-7128 doi: 10.7498/aps.59.7120
    [10]
    龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005. (Long Chengde, Zhao Bin, Yuan Peng, et al. Numerical study of nanosecond laser ablation of aluminum target with small focal spot[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [11]
    闫晓东, 任妮, 汤富领, 等. 移动脉冲激光刻蚀金属/聚酰亚胺数值模拟[J]. 中国激光, 2017, 44:0402001. (Yan Xiaodong, Ren Ni, Tang Fuling, et al. Numerical simulation of metal/polyimide etching with moving pulse laser[J]. Chinese Journal of Lasers, 2017, 44: 0402001 doi: 10.3788/CJL201744.0402001
    [12]
    文康, 李和章, 马壮, 等. 光斑尺寸对连续激光辐照铝合金温度响应影响研究[J]. 中国光学, 2020, 13(5):1023-1031. (Wen Kang, Li Hezhang, Ma Zhuang, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Journal of Optics, 2020, 13(5): 1023-1031 doi: 10.37188/CO.2020-0022
    [13]
    胡仕成, 夏晨希, 邵高建, 等. 铝熔体中超声声流的数值模拟[J]. 铸造技术, 2010, 31(12):1609-1613. (Hu Shicheng, Xia Chenxi, Shao Gaojian, et al. Numerical simulation of Ultrasonic streams in pure aluminum melts[J]. Foundry Technology., 2010, 31(12): 1609-1613
    [14]
    Tonry C E H, Djambazov G, Dybalska A, et al. Acoustic resonance for contactless ultrasonic cavitation in alloy melts[J]. Ultrason Sonochem, 2020, 63: 104959. doi: 10.1016/j.ultsonch.2020.104959
    [15]
    李玉海, 张乐, 卢伦, 等. 超高强度马氏体时效不锈钢超声疲劳过程中的热效应[J]. 金属热处理, 2015(9):55-58. (Li Yuhai, Zhang Le, Lu Lun, et al. Heat effect of ultra high strength maraging stainless steel during ultrasonic fatigue test[J]. Heat Treatment of Metals., 2015(9): 55-58
  • Relative Articles

    [1]Li Yunfei, Shi Jinfang, Qiu Rong, Yu Jian, Guo Decheng, Zhou Lei. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34(6): 061003. doi: 10.11884/HPLPB202234.220060
    [2]Xu Ziyuan, Wang Yueliang, Zhao Yuan'an, Shao Jianda. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31(9): 091004. doi: 10.11884/HPLPB201931.190164
    [3]Han Wei, Xiang Yong, Wang Fang, Zhou Lidan, Feng Bin, Li Fuquan, Zhao Junpu, Zheng Kuixing, Zhu Qihua, Wei Xiaofeng, Zheng Wanguo, Gong Mali. Measurement of Raman scattering gain coefficient in large-aperture DKDP crystals irradiated by 351 nm pulses[J]. High Power Laser and Particle Beams, 2016, 28(02): 021005. doi: 10.11884/HPLPB201628.021005
    [4]Wu Shenjiang, Wang Nan, Su Junhong, Xu Junqi, Ge Jinman, Liu Bin, Guo Shuling. Laser-induced damage of diamond-like carbon films with horizontal electric field[J]. High Power Laser and Particle Beams, 2015, 27(09): 092003. doi: 10.11884/HPLPB201527.092003
    [5]Cheng Xiufeng, Xu Mingxia, Liu Baoan, Zhang Qinghua, Zhang Jianfeng, Wang Zhengping, Sun Xun, Xu Xinguang. Properties of DKDP crystals grown at different temperature[J]. High Power Laser and Particle Beams, 2014, 26(01): 012006. doi: 10.3788/HPLPB201426.012006
    [6]Qiu Rong, Wang Junbo, Ren Huan, Li Xiaohong, Shi Pengcheng, Liu Hao, Ma Ping. Growth of laser-induced damage in fused silica under nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(05): 1057-1062. doi: 10.3788/HPLPB20122405.1057
    [7]Wu Shenjiang, Su Junhong, Shi Wei, Wang Xinmei, Xu Junqi. Laser-induced damage morphology of diamond-like carbon films with external electric field[J]. High Power Laser and Particle Beams, 2012, 24(01): 207-209.
    [8]qiu rong, wang junbo, li xiaohong, shi pengcheng, liu hao, ma ping. Laser-induced damage on K9 surface under nanotosecond irradiation[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]liu xiaofeng, li xiao, zhao yuan'an, li dawei, shao jianda, fan zhengxiu. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [10]ling xiulan, zhao yuan, li dawei, shao jianda, fan zhengxiu. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [11]miao xinxiang, yuan xiaodong, wang chengcheng, wang haijun, lü haibing, xiang xia, zheng wanguo. Laser induced damage in fused silica contaminated by Al film[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [12]sun shaotao, ji lailin, wang zhengping, mu xiaoming, sun xun, xu xinguang, shi chongde. Growth and laser damage threshold of DKDP crystal grown by different methods[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [13]hua jinrong, zu xiaotao, li li, yuan xiaodong, zheng wanguo, jiang xiaodong. Numerical simulation of laser-induced damage on rear surface of optical material[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [14]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, zhao song-nan, xu shi-zhen, wang bi-yi, tian dong-bin. Laser-induced damage of sol-gel silica acid and basic thin films[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [15]miao xin-xiang, yuan xiao-dong, wang hai-jun, lü hai-bing, wang cheng-cheng, zheng wan-guo. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [16]sun shao-tao, ji lai-lin, wang zheng-ping, liu bing, mu xiao-ming, sun xun, xu xin-guang, shi chong-de. Growth and laser damage threshold of DKDP crystal from different material[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]guo yuan-jun, zu xiao-tao, jiang xiao-dong, yuan xiao-dong, xu shi-zhen, wang bi-yi, tian dong-bin, . Comparison of laser-induced damage of monolayer ZrO2 films preparated by PVD and sol-gel methods[J]. High Power Laser and Particle Beams, 2007, 19(11): 0- .
    [18]yu ai-fang, fan fei-di, liu zhong-xing, zhu yong, chen chuang-tian. Effect of SiO2 barrier layer on laser induced damage threshold of second harmonic antireflection coatings on LiB3O5 crystal[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [19]jiang xiao-dong, huang zu-xing, ren huan, peng jing, ye lin, tang can. Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]gan rong-bing, lin li-bin, lu yong, liu qiang, zuo zhi-yun, jiang xiao-dong, huang zhu-xin, ye lin. Laser-induced bulk damage of UBK7 glass owing to its rear-surface defects[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.8 %FULLTEXT: 12.8 %META: 80.5 %META: 80.5 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.5 %其他: 0.5 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.3 %United States: 0.3 %[]: 0.4 %[]: 0.4 %上海: 1.2 %上海: 1.2 %东京都: 0.2 %东京都: 0.2 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.2 %佛山: 0.2 %北京: 8.3 %北京: 8.3 %十堰: 0.3 %十堰: 0.3 %南京: 2.6 %南京: 2.6 %南充: 0.1 %南充: 0.1 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.6 %咸阳: 0.6 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.7 %天津: 1.7 %太原: 1.0 %太原: 1.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %岩手: 0.3 %岩手: 0.3 %常州: 0.2 %常州: 0.2 %广州: 1.2 %广州: 1.2 %张家口: 1.2 %张家口: 1.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 0.4 %昆明: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.2 %桂林: 0.2 %桃园: 0.1 %桃园: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %浙江省: 0.2 %浙江省: 0.2 %深圳: 0.6 %深圳: 0.6 %温州: 0.8 %温州: 0.8 %湖州: 0.2 %湖州: 0.2 %漯河: 2.2 %漯河: 2.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 32.6 %西宁: 32.6 %西安: 2.2 %西安: 2.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.9 %郑州: 0.9 %重庆: 0.2 %重庆: 0.2 %金华: 1.0 %金华: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 1.9 %长沙: 1.9 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaIndiaUnited KingdomUnited States[]上海东京都东莞中山临汾丹东丽水乐山佛山北京十堰南京南充南通厦门台州合肥咸阳嘉兴天津太原宁波安康宣城岩手常州广州张家口徐州成都扬州无锡昆明晋城普洱杭州桂林桃园榆林武汉沈阳洛阳浙江省深圳温州湖州漯河石家庄福州秦皇岛绍兴绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长春长沙长治青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (928) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return