Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Wang Yan, Yin Jie, Dong Yinghuai, et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160
Citation: Wang Yan, Yin Jie, Dong Yinghuai, et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160

Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field

doi: 10.11884/HPLPB202133.210160
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-08-26
  • Available Online: 2021-09-24
  • Publish Date: 2021-09-15
  • In view of the influence of ultrasonic vibration on the temperature field of laser ablation of aluminum surface, a three-dimensional numerical model was established, and the temperature field of ultrasonic vibration assisted laser ablation of metal aluminum was numerically simulated by using ANSYS software. By comparing the change of temperature field of two adjacent spots with time under different laser scanning speed and ultrasonic vibration frequency, it is found that the temperature, size and position of adjacent spots all change. The numerical results show that with the increase of laser scanning speed, the maximum temperature of laser scanning to the same position decreases, and the depth of craters becomes shallow. Due to the displacement of medium molecules caused by ultrasonic vibration, when the ultrasonic vibration frequency is 15 kHz, the temperature of the crater decreases significantly and the crater position is misplaced in the direction of vibration, which is conducive to the generation of a new laser action trajectory. These experimental results have a certain guiding effect on the design of ultrasonic vibration assisted laser control parameters.
  • loading
  • [1]
    Martin D J, Wells I T, Goodwin C R. Physics of ultrasound[J]. Physics, 2015: 132-135.
    [2]
    Marvin C, Ziskin M M. Fundamental physics of ultrasound and its propagation in tissue[J]. Radio Graphics, 1993, 13: 705-709.
    [3]
    沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21):2542-2546. (Shen Cheng, Zou Ping, Kang Di, et al. Experimental study on laser drilling assisted by ultrasonic vibrating lens[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546 doi: 10.3969/j.issn.1004-132X.2020.21.004
    [4]
    Wang Houxiao, Zhu Sukai, Xu Guoxiang, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139.
    [5]
    Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 2015, 4: 1-5. doi: 10.1016/j.mfglet.2015.01.002
    [6]
    Li Meiyan, Zhang Qi, Han Bin, et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 2020, 125: 105848. doi: 10.1016/j.optlaseng.2019.105848
    [7]
    Wu Dongjiang, Guo Minhai, Ma Guangyi, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209. doi: 10.1016/j.matlet.2014.11.058
    [8]
    徐家乐, 周建忠, 谭文胜, 等. 超声振动辅助激光熔覆钴基合金涂层的抗高温氧化性能[J]. 中国激光, 2019, 46(1):0102006. (Xu Jiale, Zhou Jianzhong, Tan Wensheng, et al. High temperature oxidation resistance of laser cladding cobalt-based alloy coating assisted by ultrasonic vibration[J]. Chinese Journal of Lasers, 2019, 46(1): 0102006
    [9]
    张朋波, 秦颖, 赵纪军, 等. 纳秒激光烧蚀铝材料的二维数值模拟[J]. 物理学报, 2010, 59(10):7120-7128. (Zhang Pengbo, Qin Ying, Zhao Jijun, et al. Two-dimensional numerical simulation of nanosecond laser ablation of aluminum materials[J]. Acta Physica Sinica, 2010, 59(10): 7120-7128 doi: 10.7498/aps.59.7120
    [10]
    龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005. (Long Chengde, Zhao Bin, Yuan Peng, et al. Numerical study of nanosecond laser ablation of aluminum target with small focal spot[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [11]
    闫晓东, 任妮, 汤富领, 等. 移动脉冲激光刻蚀金属/聚酰亚胺数值模拟[J]. 中国激光, 2017, 44:0402001. (Yan Xiaodong, Ren Ni, Tang Fuling, et al. Numerical simulation of metal/polyimide etching with moving pulse laser[J]. Chinese Journal of Lasers, 2017, 44: 0402001 doi: 10.3788/CJL201744.0402001
    [12]
    文康, 李和章, 马壮, 等. 光斑尺寸对连续激光辐照铝合金温度响应影响研究[J]. 中国光学, 2020, 13(5):1023-1031. (Wen Kang, Li Hezhang, Ma Zhuang, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Journal of Optics, 2020, 13(5): 1023-1031 doi: 10.37188/CO.2020-0022
    [13]
    胡仕成, 夏晨希, 邵高建, 等. 铝熔体中超声声流的数值模拟[J]. 铸造技术, 2010, 31(12):1609-1613. (Hu Shicheng, Xia Chenxi, Shao Gaojian, et al. Numerical simulation of Ultrasonic streams in pure aluminum melts[J]. Foundry Technology., 2010, 31(12): 1609-1613
    [14]
    Tonry C E H, Djambazov G, Dybalska A, et al. Acoustic resonance for contactless ultrasonic cavitation in alloy melts[J]. Ultrason Sonochem, 2020, 63: 104959. doi: 10.1016/j.ultsonch.2020.104959
    [15]
    李玉海, 张乐, 卢伦, 等. 超高强度马氏体时效不锈钢超声疲劳过程中的热效应[J]. 金属热处理, 2015(9):55-58. (Li Yuhai, Zhang Le, Lu Lun, et al. Heat effect of ultra high strength maraging stainless steel during ultrasonic fatigue test[J]. Heat Treatment of Metals., 2015(9): 55-58
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (828) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return