Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation: Hu Jiaqi, Li Zhenyu, Wang Zuxin, et al. Design of low-scattering transmissive lens based on integration of absorption with focusing[J]. High Power Laser and Particle Beams, 2021, 33: 103005. doi: 10.11884/HPLPB202133.210169

Design of low-scattering transmissive lens based on integration of absorption with focusing

doi: 10.11884/HPLPB202133.210169
  • Received Date: 2021-05-08
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-09-04
  • Publish Date: 2021-10-15
  • Based on the integration of a transmissive metasurface lens with the circuit analog absorber, the design of a microwave composite material with characteristics of both transmissive wavefront conversion and out-of-band radar cross-section reduction is proposed and examined. With the refraction tuned by gradient phase compensation, the lens consisting of sub-wavelength spaced layers of periodic inclusions exhibits a reciprocal conversion between planar and spherical wavefronts. Moreover, the responses of the lens at the lower side of the wavefront conversion band are used to construct a circuit analog absorption profile containing one lossy layer. By using an aperture-coupled microstrip patch antenna element as the primary feeding antenna, main lobe gain enhancement over a wide band is observed as a result of the wavefront conversion of the composite material. In comparison with the lens, the introduction of the circuit analog absorption profile produces radar cross-section reduction over the bandwidths of 130.68% and 155.11% for TE and TM polarizations, respectively. The full-wave simulation and experimental measurement demonstrate the enhanced radiation gain and reduced radar cross-section and illustrate the validity of the composite material design with integrated absorption and focusing.
  • [1]
    Munk B A. Frequency selective surfaces: Theory and design[M]. New York: John Wiley & Sons, 2000.
    [2]
    Chiu C N, Kuo C H, Lin M S. Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 895-904. doi: 10.1109/TEMC.2008.2004560
    [3]
    Wang Linbiao, See K Y, Zhang Junwu, et al. Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 700-705. doi: 10.1109/TEMC.2011.2159509
    [4]
    王向峰, 高炳攀, 任志英, 等. 一体化曲面共形频率选择表面雷达罩[J]. 光学 精密工程, 2018, 26(6):1362-1369. (Wang Xiangfeng, Gao Binpan, Ren Zhiying, et al. Integrated curved-surface conformal frequency selective surface radome[J]. Optics and Precision Engineering, 2018, 26(6): 1362-1369 doi: 10.3788/OPE.20182606.1362
    [5]
    李姣, 乔学增, 骆兴芳. 一种多频段可调复合单元频率选择表面的设计[J]. 电子测量技术, 2010, 33(12):24-28. (Li Jiao, Qiao Xuezeng, Luo Xingfang. Design of frequency selective surfaces with adjustable compounded unit cell and multi-band[J]. Electronic Measurement Technology, 2010, 33(12): 24-28 doi: 10.3969/j.issn.1002-7300.2010.12.007
    [6]
    王珊珊, 高劲松, 梁凤超, 等. 多频段十字分形频率选择表面[J]. 物理学报, 2011, 60:050703. (Wang Shanshan, Gao Jinsong, Liang Fengchao, et al. Multiband fractal cross dipole frequency selective surface[J]. Acta Physica Sinica, 2011, 60: 050703
    [7]
    Yadav S, Jain C P, Sharma M M. Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 887-892. doi: 10.1109/TEMC.2018.2839707
    [8]
    Sampath S S, Sivasamy R. A single-layer UWB frequency-selective surface with band-stop response[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 276-279. doi: 10.1109/TEMC.2018.2886285
    [9]
    Yin Weiyang, Zhang Hou, Zhong Tao, et al. Ultra-miniaturized low-profile angularly-stable frequency selective surface design[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1234-1238. doi: 10.1109/TEMC.2018.2881161
    [10]
    Sampath S S, Sivasamy R, Kumar K J J. A novel miniaturized polarization independent band-stop frequency selective surface[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1678-1681. doi: 10.1109/TEMC.2018.2869664
    [11]
    郑光明, 王雪纯, 汪岩. 小型化宽阻带多层宽带频率选择表面研究[J]. 华中科技大学学报(自然科学版), 2020, 48(8):57-60. (Zheng Guangming, Wang Xuechun, Wang Yan. Study on miniaturized ultra wide stopband multilayer broadband frequency selective surface[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2020, 48(8): 57-60 doi: 10.13245/j.hust.200810
    [12]
    Paiva S B, Neto V P S, D'Assunção A G. A new compact, stable, and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 691-697. doi: 10.1109/TEMC.2019.2918568
    [13]
    Sivasamy R, Moorthy B, Kanagasabai M, et al. A wideband frequency tunable FSS for electromagnetic shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 280-283. doi: 10.1109/TEMC.2017.2702572
    [14]
    Ghosh S, Srivastava K V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166-172.
    [15]
    Zhang Liang, Yang Guohui, Wu Qun, et al. A novel active frequency selective surface with wideband tuning range for EMC purpose[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4534-4537.
    [16]
    薛凤至, 伍瑞新, 徐成, 等. 利用小型化频率选择表面实现宽带电磁透明[J]. 压电与声光, 2019, 41(4):465-468. (Xue Fengzhi, Wu Ruixin, Xu Cheng, et al. Using miniaturized frequency selective surface to realize broadband electromagnetic transparency[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 465-468 doi: 10.11977/j.issn.1004-2474.2019.04.001
    [17]
    Choi W H, Shin J H, Song T H, et al. Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3): 599-607. doi: 10.1109/TEMC.2013.2290057
    [18]
    He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [19]
    Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 17: 143723-143733.
    [20]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
    [21]
    Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [22]
    Baskey H B, Johari E, Akhtar M J. Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1060-1069. doi: 10.1109/TEMC.2016.2639060
    [23]
    Bilotti F, Toscano A, Alici K B, et al. Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 63-72. doi: 10.1109/TEMC.2010.2051229
    [24]
    段坤, 唐守柱. 一种宽通带低插损的吸透一体频率选择表面[J]. 现代雷达, 2020, 42(4):72-76. (Duan Kun, Tang Shouzhu. A wide passband and low insertion loss frequency-selective resorber[J]. Modern Radar, 2020, 42(4): 72-76
    [25]
    赵宇婷, 李迎松, 杨国辉. 基于电路模拟吸收体的宽带吸波型频率选择表面设计[J]. 物理学报, 2020, 69:198101. (Zhao Yuting, Li Yingsong, Yang Guohui. A novel wideband absorptive frequency selective surface based on circuit analog absorber[J]. Acta Physica Sinic, 2020, 69: 198101 doi: 10.7498/aps.69.20200641
    [26]
    强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210
    [27]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. Frequency-selective rasorber based on square-loop and cross-dipole arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5581-5589. doi: 10.1109/TAP.2014.2357427
    [28]
    Pang Yongqiang, Li Yongfeng, Qu Bingyue, et al. Wideband RCS reduction metasurface with a transmission window[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(10): 7079-7087. doi: 10.1109/TAP.2020.2995429
    [29]
    Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
    [30]
    Shang Yuping, Xiao Shaoqiu, Tang Mingchun, et al. Radar cross-section reduction for a microstrip patch antenna using PIN diodes[J]. IET Microwaves Antennas & Propagation, 2012, 6(6): 670-679. doi: 10.1049/iet-map.2011.0460
  • Relative Articles

    [1]Ma Liehua, Chen Shuang, Li Hongtao, Peng Xusheng, Zhang Botao, Li Bo, Wang Cheng, Ai Jie. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35(11): 119002. doi: 10.11884/HPLPB202335.230130
    [2]Huang Zhanchang, Zhang Chengjun, Chen Jinchuan, Yang Jianlun, Li Linbo, You Haibo, Wang Dongming, You Wenhao, He Chao, Yang Gaozhao, Zhao Xueshui, Xie Hongwei. Reliability experimental study of optical streak camera[J]. High Power Laser and Particle Beams, 2022, 34(2): 022001. doi: 10.11884/HPLPB202234.210382
    [3]Ma Chenggang, Li Hongtao, Deng Minghai, Cao Ningxiang, Mo Tengfu, Wang Xiao, Zhang Zhiqiang. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32(2): 025018. doi: 10.11884/HPLPB202032.190378
    [4]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [5]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [6]Cao Fei, Cheng Jian, Pan Zeyue, Chen Yuanyuan. Precision voltage-controlled constant current source for atomic oxygen ground simulation equipment[J]. High Power Laser and Particle Beams, 2015, 27(08): 082002. doi: 10.11884/HPLPB201527.082002
    [7]Zhou Songqing, Guan Xiaowei, Zhang Shiqiang, Qu Pubo, Sun Yanhong, He Minbo. Application of GO methodology to reliability analysis in solid-state laser system[J]. High Power Laser and Particle Beams, 2014, 26(02): 021005. doi: 10.3788/HPLPB201426.021005
    [8]Zhao Juan, Li Bo, Yu Zhiguo, Cao Ningxiang, Huang Lei, Li Xiqin, Huang Bin, Wang Wei, Li Yawei. Design of sampling resistor of high power constant-current source[J]. High Power Laser and Particle Beams, 2012, 24(04): 925-928. doi: 10.3788/HPLPB20122404.0925
    [9]jia zhanqiang, cai jinyan, liang yuying, han chunhui. Reliability assessment of metallized film pulse capacitor[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [11]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]zhao juan, cao kefeng, cao ningxiang, huang bin, yu zhiguo, li xiqin, li bo, huang lei, wang wei, zhu lijun. Development of HL80 low ripple high current computer-controlling constant current source[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]cao ronggang, zou jun, yuan jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]meng fan-jiang, guo li-hong, yang gui-long, li dian-jun. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [15]chen guang-yu, yang dong, zhang xiao-min, he shao-bo, zheng wan-guo, you yong. Reliability analysis of Xe-flashlamps of disk amplifier subsystems for laser facility[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [16]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [17]zhao jian-yin, sun quan, zhou jing-lun, he shao-bo, wei xiao-feng. Failure analysis of metallized film pulse capacitors based on accelerated degradation data[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [18]zhao jian-yin, liu fang, sun quan, zhou jing-lun, wei xiao-feng, he shao-bo. Reliability assessment of metallized film capacitors using degradation failure model[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [19]weng ling-wen, niu zhong-xia, lin jing-yu, zhou dong-fang, hou de-ting. Application of BLT equation to electromagnetic interaction of high power microwave[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [20]fu si-zu, huang xiu-guang, wu jiang, ma min xun, he ju-hua, ye jun-jian, gu yuan. Planarity and stability of shock driven directly by multi-beam laserfrom “Shenguang-II” laser facility[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
  • Cited by

    Periodical cited type(4)

    1. 李胜铭,于艺旋,王义普,吴振宇. 赛教融合的数控开关恒流源设计. 实验室科学. 2020(04): 74-79 .
    2. 程俊平,周长林,余道杰,徐志坚,张栋耀. 基于供电网络传导耦合的FPGA电磁敏感特性分析. 强激光与粒子束. 2019(02): 64-70 . 本站查看
    3. 赵娟,曹宁翔,黄斌,李波,张信,黄宇鹏,李洪涛. 神龙-Ⅲ直线感应加速器高稳定度恒流源控制系统. 强激光与粒子束. 2019(04): 89-93 . 本站查看
    4. 李佳戈,苏宗文,任海萍. 医疗器械电磁兼容试验中工作模式的确定. 中国医疗设备. 2019(09): 17-19+23 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.5 %FULLTEXT: 24.5 %META: 73.4 %META: 73.4 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %丽水: 0.2 %丽水: 0.2 %俄罗斯莫斯科: 0.3 %俄罗斯莫斯科: 0.3 %保定: 0.3 %保定: 0.3 %内江: 0.1 %内江: 0.1 %北京: 10.8 %北京: 10.8 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %天津: 0.1 %天津: 0.1 %安康: 0.1 %安康: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 2.8 %张家口: 2.8 %悉尼: 0.7 %悉尼: 0.7 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 1.6 %杭州: 1.6 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 0.7 %漯河: 0.7 %漳州: 0.2 %漳州: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 9.8 %芒廷维尤: 9.8 %芝加哥: 0.1 %芝加哥: 0.1 %莫斯科: 0.7 %莫斯科: 0.7 %衢州: 0.4 %衢州: 0.4 %西宁: 60.0 %西宁: 60.0 %西安: 0.4 %西安: 0.4 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndia上海中山丽水俄罗斯莫斯科保定内江北京十堰南京台州合肥天津安康常州广州张家口悉尼成都扬州普洱杭州桃园武汉深圳温州湖州漯河漳州福州秦皇岛绵阳芒廷维尤芝加哥莫斯科衢州西宁西安运城邯郸郑州长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (1314) PDF downloads(66) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return