Gao Bin, Pei Shilun, Wang Hui, et al. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33: 024002. doi: 10.11884/HPLPB202133.200162
Citation: Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Oscillation properties of ion channel during long-range propagation of electron beam[J]. High Power Laser and Particle Beams, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187

Oscillation properties of ion channel during long-range propagation of electron beam

doi: 10.11884/HPLPB202133.210187
  • Received Date: 2021-05-17
  • Rev Recd Date: 2021-07-04
  • Available Online: 2021-07-27
  • Publish Date: 2021-09-15
  • It is known that the ion channel can limit the radial expansion of the electron beam during long-range propagation in the plasma environment. Previous research typically concentrated on the interaction between the beam and plasma, but research on the establishment and transient properties may lay the foundation for understanding and using the ion channel during long-range propagation. In this study, a series of 2D particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle-motion. The results show that the ion channel established by relativistic electron beam in the plasma continues to oscillate periodically during the long-range propagation of relativistic electron beam. The beam electron density, initial beam radius and the plasma density can influence the dynamics of the ion channel oscillation. Choosing suitable beam parameters based on the various plasma environment can contribute to the improvement of the stability of the ion channel and further the beam quality.
  • [1]
    Sanchez E R, Powis A T, Kaganovich I D, et al. Relativistic particle beams as a resource to solve outstanding problems in space physics[J]. Front Astron Space Sci, 2019, 6: 71. doi: 10.3389/fspas.2019.00071
    [2]
    Reeves G D, Delzanno G L, Fernandes P A, et al. The beam plasma interactions experiment: an active experiment using pulsed electron beams[J]. Front Astron Space Sci, 2020, 7: 23. doi: 10.3389/fspas.2020.00023
    [3]
    Borovsky J E, Delzanno G L. Active experiments in space: the future[J]. Front Astron Space Sci, 2019, 6: 31. doi: 10.3389/fspas.2019.00031
    [4]
    Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998: 1-77.
    [5]
    Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Influence of geomagnetic field on the long-range propagation of relativistic electron beam in the atmosphere[J]. IEEE Trans Plasma Sci, 2020, 48(11): 3871-3876. doi: 10.1109/TPS.2020.3026088
    [6]
    Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the earth's atmosphere: modeling results[J]. Geophys Res Lett, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [7]
    Neubert T, Gilchrist B E. 3D electromagnetic PIC simulations of relativistic electron pulse injections from spacecraft[J]. Adv Space Res, 2002, 29(9): 1385-1390. doi: 10.1016/S0273-1177(02)00185-0
    [8]
    Sanford T W L. High-power electron-beam transport in long gas cells from 10-3 to 103 Torr nitrogen[J]. Phys Plasmas, 1995, 2(6): 2539-2546. doi: 10.1063/1.871474
    [9]
    Pal U N, Shukla P, Jadon A S, et al. Estimation of beam and plasma parameters for electron beam transport in ion-focused regime[J]. IEEE Trans Plasma Sci, 2017, 45(12): 3195-3201. doi: 10.1109/TPS.2017.2771337
    [10]
    Buchanan H L. Electron beam propagation in the ion-focused regime[J]. Phys Fluids, 1987, 30(1): 221-231. doi: 10.1063/1.866173
    [11]
    Swanekamp S B, Holloway J P, Kammash T, et al. The theory and simulation of relativistic electron beam transport in the ion-focused regime[J]. Phys Fluids B, 1992, 4(5): 1332-1348. doi: 10.1063/1.860088
    [12]
    Lotov K V. Plasma response to ultrarelativistic beam propagation[J]. Phys Plasmas, 1996, 3(7): 2753-2759. doi: 10.1063/1.872081
    [13]
    Whittum D H, Sessler A M. Ion-channel laser[J]. Phys Rev Lett, 1990, 64(21): 2511-2514. doi: 10.1103/PhysRevLett.64.2511
    [14]
    Chen K R, Katsouleas T C, Dawson J M. On the amplification mechanism of the ion-channel laser[J]. IEEE Trans Plasma Sci, 1990, 18(5): 837-841. doi: 10.1109/27.62351
    [15]
    Xia Yuxi, Yang Shengpeng, Chen Shaoyong, et al. Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Sci Technol, 2020, 22(8): 085001. doi: 10.1088/2058-6272/ab785d
    [16]
    Smith J R, Shokair I R, Struve K W, et al. Transverse oscillations of a long-pulse electron beam on a laser-formed channel[J]. IEEE Trans Plasma Sci, 1991, 19(5): 850-854. doi: 10.1109/27.108423
    [17]
    陈希, 刘盛钢, 谢文楷. 离子通道的暂态特性及其粒子模拟[J]. 电子学报, 2000, 28(3):61-63. (Chen Xi, Liu Shenggang, Xie Wenkai. The transient performance of ion channel and its modelling[J]. Acta Electron Sin, 2000, 28(3): 61-63 doi: 10.3321/j.issn:0372-2112.2000.03.017
    [18]
    Hockney R W, Eastwood J W. Computer simulation using particles[M]. New York: IOP Publishing Ltd, 1988.
    [19]
    Bilitza D, Altadill D, Zhang Yongliang, et al. The international reference ionosphere 2012—a model of international collaboration[J]. J Space Weather Space Clim, 2014, 4: A07. doi: 10.1051/swsc/2014004
    [20]
    金佑民, 樊友三. 低温等离子体物理基础[M]. 北京: 清华大学出版社, 1983: 12-14.

    Jin Youmin, Fan Yousan. Fundamentals of low temperature plasma physics[M]. Beijing: Tsinghua University Press, 1983: 12-14).
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.9 %FULLTEXT: 23.9 %META: 73.8 %META: 73.8 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %Arrowtown: 0.1 %Arrowtown: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Taichung: 0.1 %Taichung: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.7 %[]: 0.7 %上海: 3.6 %上海: 3.6 %中山: 0.1 %中山: 0.1 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %加利福尼亚州: 0.3 %加利福尼亚州: 0.3 %北京: 18.4 %北京: 18.4 %南昌: 0.2 %南昌: 0.2 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸宁: 0.3 %咸宁: 0.3 %大连: 0.1 %大连: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.0 %张家口: 1.0 %德黑兰: 0.3 %德黑兰: 0.3 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %普洱: 0.1 %普洱: 0.1 %杭州: 1.3 %杭州: 1.3 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.1 %漯河: 0.1 %濮阳: 0.1 %濮阳: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %艾因: 0.3 %艾因: 0.3 %芒廷维尤: 16.3 %芒廷维尤: 16.3 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 42.7 %西宁: 42.7 %西安: 1.0 %西安: 1.0 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 1.6 %郑州: 1.6 %重庆: 0.2 %重庆: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %阜新: 0.1 %阜新: 0.1 %陶朗加: 0.3 %陶朗加: 0.3 %香港: 0.3 %香港: 0.3 %其他ArrowtownCentral DistrictChinaIndiaTaichungUnited States[]上海中山临沂乌鲁木齐加利福尼亚州北京南昌台州合肥咸宁大连常州广州张家口德黑兰成都扬州普洱杭州桃园武汉深圳温州湖州漯河濮阳石家庄秦皇岛绵阳艾因芒廷维尤芝加哥衢州西宁西安诺沃克运城郑州重庆长春长沙阜新陶朗加香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1115) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return