Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Oscillation properties of ion channel during long-range propagation of electron beam[J]. High Power Laser and Particle Beams, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187
Citation: Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Oscillation properties of ion channel during long-range propagation of electron beam[J]. High Power Laser and Particle Beams, 2021, 33: 093006. doi: 10.11884/HPLPB202133.210187

Oscillation properties of ion channel during long-range propagation of electron beam

doi: 10.11884/HPLPB202133.210187
  • Received Date: 2021-05-17
  • Rev Recd Date: 2021-07-04
  • Available Online: 2021-07-27
  • Publish Date: 2021-09-15
  • It is known that the ion channel can limit the radial expansion of the electron beam during long-range propagation in the plasma environment. Previous research typically concentrated on the interaction between the beam and plasma, but research on the establishment and transient properties may lay the foundation for understanding and using the ion channel during long-range propagation. In this study, a series of 2D particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle-motion. The results show that the ion channel established by relativistic electron beam in the plasma continues to oscillate periodically during the long-range propagation of relativistic electron beam. The beam electron density, initial beam radius and the plasma density can influence the dynamics of the ion channel oscillation. Choosing suitable beam parameters based on the various plasma environment can contribute to the improvement of the stability of the ion channel and further the beam quality.
  • loading
  • [1]
    Sanchez E R, Powis A T, Kaganovich I D, et al. Relativistic particle beams as a resource to solve outstanding problems in space physics[J]. Front Astron Space Sci, 2019, 6: 71. doi: 10.3389/fspas.2019.00071
    [2]
    Reeves G D, Delzanno G L, Fernandes P A, et al. The beam plasma interactions experiment: an active experiment using pulsed electron beams[J]. Front Astron Space Sci, 2020, 7: 23. doi: 10.3389/fspas.2020.00023
    [3]
    Borovsky J E, Delzanno G L. Active experiments in space: the future[J]. Front Astron Space Sci, 2019, 6: 31. doi: 10.3389/fspas.2019.00031
    [4]
    Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998: 1-77.
    [5]
    Xue Bixi, Hao Jianhong, Zhao Qiang, et al. Influence of geomagnetic field on the long-range propagation of relativistic electron beam in the atmosphere[J]. IEEE Trans Plasma Sci, 2020, 48(11): 3871-3876. doi: 10.1109/TPS.2020.3026088
    [6]
    Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the earth's atmosphere: modeling results[J]. Geophys Res Lett, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [7]
    Neubert T, Gilchrist B E. 3D electromagnetic PIC simulations of relativistic electron pulse injections from spacecraft[J]. Adv Space Res, 2002, 29(9): 1385-1390. doi: 10.1016/S0273-1177(02)00185-0
    [8]
    Sanford T W L. High-power electron-beam transport in long gas cells from 10-3 to 103 Torr nitrogen[J]. Phys Plasmas, 1995, 2(6): 2539-2546. doi: 10.1063/1.871474
    [9]
    Pal U N, Shukla P, Jadon A S, et al. Estimation of beam and plasma parameters for electron beam transport in ion-focused regime[J]. IEEE Trans Plasma Sci, 2017, 45(12): 3195-3201. doi: 10.1109/TPS.2017.2771337
    [10]
    Buchanan H L. Electron beam propagation in the ion-focused regime[J]. Phys Fluids, 1987, 30(1): 221-231. doi: 10.1063/1.866173
    [11]
    Swanekamp S B, Holloway J P, Kammash T, et al. The theory and simulation of relativistic electron beam transport in the ion-focused regime[J]. Phys Fluids B, 1992, 4(5): 1332-1348. doi: 10.1063/1.860088
    [12]
    Lotov K V. Plasma response to ultrarelativistic beam propagation[J]. Phys Plasmas, 1996, 3(7): 2753-2759. doi: 10.1063/1.872081
    [13]
    Whittum D H, Sessler A M. Ion-channel laser[J]. Phys Rev Lett, 1990, 64(21): 2511-2514. doi: 10.1103/PhysRevLett.64.2511
    [14]
    Chen K R, Katsouleas T C, Dawson J M. On the amplification mechanism of the ion-channel laser[J]. IEEE Trans Plasma Sci, 1990, 18(5): 837-841. doi: 10.1109/27.62351
    [15]
    Xia Yuxi, Yang Shengpeng, Chen Shaoyong, et al. Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Sci Technol, 2020, 22(8): 085001. doi: 10.1088/2058-6272/ab785d
    [16]
    Smith J R, Shokair I R, Struve K W, et al. Transverse oscillations of a long-pulse electron beam on a laser-formed channel[J]. IEEE Trans Plasma Sci, 1991, 19(5): 850-854. doi: 10.1109/27.108423
    [17]
    陈希, 刘盛钢, 谢文楷. 离子通道的暂态特性及其粒子模拟[J]. 电子学报, 2000, 28(3):61-63. (Chen Xi, Liu Shenggang, Xie Wenkai. The transient performance of ion channel and its modelling[J]. Acta Electron Sin, 2000, 28(3): 61-63 doi: 10.3321/j.issn:0372-2112.2000.03.017
    [18]
    Hockney R W, Eastwood J W. Computer simulation using particles[M]. New York: IOP Publishing Ltd, 1988.
    [19]
    Bilitza D, Altadill D, Zhang Yongliang, et al. The international reference ionosphere 2012—a model of international collaboration[J]. J Space Weather Space Clim, 2014, 4: A07. doi: 10.1051/swsc/2014004
    [20]
    金佑民, 樊友三. 低温等离子体物理基础[M]. 北京: 清华大学出版社, 1983: 12-14.

    Jin Youmin, Fan Yousan. Fundamentals of low temperature plasma physics[M]. Beijing: Tsinghua University Press, 1983: 12-14).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (990) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return