Citation: | Zhang Yin, Liao Cheng, Shang Yuping, et al. Analysis of lightning overvoltages at the junction of distribution network based on electromagnetic topology[J]. High Power Laser and Particle Beams, 2021, 33: 083001. doi: 10.11884/HPLPB202133.210189 |
[1] |
陈家宏, 赵淳, 王剑, 等. 基于直接获取雷击参数的输电线路雷击风险优化评估方法[J]. 高电压技术, 2015, 41(1):14-20. (Chen Jiahong, Zhao Chun, Wang Jian, et al. Optimal lightning risk assessment method of transmission line based on direct acquisition of lightning stroke parameter[J]. High Voltage Engineering, 2015, 41(1): 14-20
|
[2] |
Zhang Liang, Wang Lei, Yang Jin, et al. Effect of overhead shielding wires on the lightning-induced voltages of multiconductor lines above the lossy ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(2): 458-466. doi: 10.1109/TEMC.2018.2825287
|
[3] |
Zhang Yin, Liao Cheng, Shang Yuping. Fast evaluation of lightning electromagnetic fields based on matrix pencil method in time domain[J]. Microwave and Optical Technology Letters, 2021, 63(4): 1029-1034. doi: 10.1002/mop.32738
|
[4] |
李青山, 皇甫羽飞, 张帅, 等. 110 kV输电线路电容降压取电系统雷电过电压分析[J]. 电网技术, 2015, 39(7):2058-2063. (Li Qingshan, Huangfu Yufei, Zhang Shuai, et al. Lighting over-voltage analysis of 110 kV transmission line capacitor step-down power system[J]. Power System Technology, 2015, 39(7): 2058-2063
|
[5] |
李琳, 齐秀军. 配电线路感应雷过电压计算[J]. 高电压技术, 2011, 37(5):1093-1099. (Li Lin, Qi Xiujun. Calculation of the lightning induced voltages on power distribution line[J]. High Voltage Engineering, 2011, 37(5): 1093-1099
|
[6] |
Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: Wiley, 1997.
|
[7] |
Barker P P, Short T A, Eybert-Berard A R, et al. Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightning flashes[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 982-995. doi: 10.1109/59.496184
|
[8] |
Paulino J O S, Barbosa C F, Lopes I J S, et al. The peak value of lightning-induced voltages in overhead lines considering the ground resistivity and typical return stroke parameters[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 920-926. doi: 10.1109/TPWRD.2010.2095887
|
[9] |
Liu Xin, Zhang Mengmeng, Wang Tao, et al. Fast evaluation of light ning-induced voltages of overhead line and buried cable considering the lossy ground[J]. IET Science, Measurement & Technology, 2019, 13(1): 67-73.
|
[10] |
张波, 薛惠中, 金祖山, 等. 遭受雷击时输电杆塔及其接地装置的暂态电位分布[J]. 高电压技术, 2013, 39(2):393-398. (Zhang Bo, Xue Huizhong, Jin Zushan, et al. Transient potential distribution of transmission tower and its grounding device under lightning[J]. High Voltage Engineering, 2013, 39(2): 393-398 doi: 10.3969/j.issn.1003-6520.2013.02.020
|
[11] |
曹晓斌, 高竹青, 马御堂, 等. 雷击下500 kV杆塔接地装置的散流有效性[J]. 高电压技术, 2017, 43(5):1596-1601. (Cao Xiaobin, Gao Zhuqing, Ma Yutang, et al. Current divergence validity of 500 kV tower grounding device under lightning stroke[J]. High Voltage Engineering, 2017, 43(5): 1596-1601
|
[12] |
Sheshyekani K, Paknahad J. Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a horizontally stratified ground[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 290-298. doi: 10.1109/TPWRD.2014.2329902
|
[13] |
Sheshyekani K, Paknahad J. The effect of an ocean-land mixed propagation path on the lightning electromagnetic fields and their induced voltages on overhead lines[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 229-236. doi: 10.1109/TPWRD.2014.2339096
|
[14] |
谢海燕. 瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用[D]. 北京: 清华大学, 2010.
Xie Haiyan. Transient electromagnetic topology theory and its application in electromagnetic pulse effects of electronic systems[D]. Beijing: Tsinghua University, 2010
|
[15] |
Parmantier J P. An efficient technique to calculate ideal junction scattering parameters in multiconductor transmission line networks[J]. Interaction Notes, 1998, 536: 1-13.
|
[16] |
Xiao Pei, Du Pingan, Ren Dan, et al. A hybrid method for calculating the coupling to PCB inside a nested shielding enclosure based on electromagnetic topology[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(6): 1701-1709. doi: 10.1109/TEMC.2016.2588505
|
[17] |
Gong Yanfei, Hao Jianhong, Jiang Luhang. Efficient analytical method for the coupling to penetrated transmission line in multiple enclosures based on electromagnetic topology[J]. IET Science, Measurement & Technology, 2018, 12(3): 335-342.
|
[18] |
Han J H, Ju S H, Kang N W, et al. Wideband coupling modeling analysis by arbitrarily incoming source fields based on the electro-magnetic topology technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1): 28-37. doi: 10.1109/TMTT.2018.2876221
|
[19] |
Han J H. Propagation and scattering supermatrices generation algorithm for implementation of electromagnetic topology technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3037-3046. doi: 10.1109/TAP.2019.2955201
|
[20] |
何金良, 曾嵘. 配电线路雷电防护[M]. 北京: 清华大学出版社, 2013.
He Jingliang, Zeng Rong. Lightning protection of distribution line[M]. Beijing: Tsinghua University Press, 2013
|
[21] |
Guo Juo, Xie Yanzhao, Rachidi F. A semi-analytical method to evaluate lightning-induced overvoltages on overhead lines using the matrix pencil method[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2837-2848. doi: 10.1109/TPWRD.2018.2842237
|