Yu Shijie, Long Minhui, Lu Fang, et al. Experiment of partially coherent and coherent light propagating through a turbulence emulator[J]. High Power Laser and Particle Beams, 2015, 27: 011002. doi: 10.11884/HPLPB201527.011002
Citation: Yang Yang, Zhu Bingli, Gou Yongsheng, et al. Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability[J]. High Power Laser and Particle Beams, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192

Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability

doi: 10.11884/HPLPB202133.210192
  • Received Date: 2021-05-20
  • Rev Recd Date: 2021-08-05
  • Available Online: 2021-08-12
  • Publish Date: 2021-09-15
  • A hermetically sealed X-ray framing tube with CsI photocathode is proposed to solve the problems of poor stability and low detection quantum efficiency brought by the open structure framing tube with Au photocathodes. Two microstrip photocathodes of 100 nm Au and 100 nm CsI are fabricated to compare their sensitivities under the same environmental conditions. The structure and the fabrication process of the sealed framing tube are described inthispaper. After fabrication, the sealed framing tube is tested to verify its performance. The measurement shows that exposure time of the proposed framing tube is 65 ps when gated by an ultrafast pulse with 200 ps width and −2.7 kV amplitude. At static mode, the image intensity of the CsI photocathode is 3.4 times that of the Au photocathode under the irradiation of non-monochromatic high energy X-ray source. Its static response intensity is reduced to 83% compared with the initial value after being stored in the laboratory air for 1000 h. These results indicate that the sealed framing tube with CsI photocathode can achieve higher detection efficiency and stability, and can effectively improve the quality and reliability of X-ray framing imaging.
  • [1]
    Bradley D K, Bell P M, Kilkenny J D, et al. High-speed gated X-ray imaging for ICF target experiments[J]. Review of Scientific Instruments, 1992, 63(10): 4813-4817. doi: 10.1063/1.1143571
    [2]
    Chang Zenghu, Shan Bing, Liu Xiuqin, et al. Gated MCP framing camera with 60-ps exposure time[C]//Proceedings of SPIE 2549, Ultrahigh-and High-Speed Photography, Videography, and Photonics'95. 1995: 53-59.
    [3]
    Yang Wenzheng, Bai Yonglin, Liu Baiyu, et al. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(2): 291-296.
    [4]
    Oertel J A, Aragonez R, Archuleta T, et al. Gated X-ray detector for the National Ignition Facility[J]. Review of Scientific Instruments, 2006, 77: 10E308. doi: 10.1063/1.2227439
    [5]
    曹柱荣, 王强强, 邓博, 等. 激光聚变极端环境下X光高速摄影技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112004. (Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004
    [6]
    王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112002. (Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002
    [7]
    Pawley C J, Deniz A V. Improved measurements of noise and resolution of X-ray framing cameras at 1−2 keV[J]. Review of Scientific Instruments, 2000, 71(3): 1286-1295. doi: 10.1063/1.1150497
    [8]
    Henke B L, Liesegang J, Smith S D. Soft-X-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements[J]. Physical Review B, 1979, 19(6): 3004-3021. doi: 10.1103/PhysRevB.19.3004
    [9]
    黎宇坤, 陈韬, 李晋, 等. CsI光阴极在10—100 keV X射线能区的响应灵敏度计算[J]. 物理学报, 2018, 67:085203. (Li Yukun, Chen Tao, Li Jin, et al. Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region[J]. Acta Physica Sinica, 2018, 67: 085203 doi: 10.7498/aps.67.20180029
    [10]
    Xie Yuguang, Zhang Aiwu, Liu Yingbiao, et al. Influence of air exposure on CsI photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 689: 79-86.
    [11]
    Chollet M, Ahr B, Walko D A, et al. Hard X-ray streak camera at the advanced photon source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649(1): 70-72.
    [12]
    Opachich Y P, Kalantar D H, MacPhee A G, et al. High performance imaging streak camera for the National Ignition Facility[J]. Review of Scientific Instruments, 2012, 83: 125105. doi: 10.1063/1.4769753
    [13]
    Henke B L, Knauer J P, Premaratne K. The characterization of X-ray photocathodes in the 0.1−10-keV photon energy region[J]. Journal of Applied Physics, 1981, 52(3): 1509-1520. doi: 10.1063/1.329789
    [14]
    Boone J M, Seibert J A. An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670. doi: 10.1118/1.597953
    [15]
    Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499
    [16]
    Nagel S R, Trosseille C A, MacPhee A, et al. Evaluation of X-ray transmission photocathode detection issues in the energy range of 8-30 keV[C]//Proceedings of SPIE 11114, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. 2019: 1111416.
    [17]
    Li Yaran, Mu Baozhong, Xie Qing, et al. Development of an X-ray eight-image Kirkpatrick–Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
  • Relative Articles

    [1]Zheng Kaitao, Li Haiyan, Gan Huaquan, Huang Yunbao, Li Yulong, Jing Longfei, Guan Zanyang, Huang Qingxin, Yu Yuanping. CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization[J]. High Power Laser and Particle Beams, 2023, 35(7): 072002. doi: 10.11884/HPLPB202335.230011
    [2]Yang Jing, Cao Jianshe, Du Yaoyao, Wang Lin, Ma Yufei, Zhang Xing’er, Ye Qiang, Ma Huizhou, Wei Shujun, Yue Junhui, Sui Yanfeng. Design and implementation of digital delay and pulse generator of BEPC II linear accelerator[J]. High Power Laser and Particle Beams, 2020, 32(7): 074001. doi: 10.11884/HPLPB202032.200018
    [3]Zhu Yanju, Xie Shuguo, Li Yuanhao, Zhang Xian. Research on blind recovery method of wideband electromagnetic image convolutional neural network[J]. High Power Laser and Particle Beams, 2019, 31(10): 103210. doi: 10.11884/HPLPB201931.190191
    [4]Yang Ying, Yu Zhefeng, Dong Weizhong, Ding Mingsong, Sun Liangkui, Huang Jie. Blackout mitigation by electromagnetic control in re-entry vehicles[J]. High Power Laser and Particle Beams, 2018, 30(12): 123201. doi: 10.11884/HPLPB201830.180238
    [5]Qi Chao, Wei Guanghui, Pan Xiaodong, Li Wei, Wang Yaping. Effect of variation of electromagnetic pulse repetition rate ondigital communication stations[J]. High Power Laser and Particle Beams, 2018, 30(10): 103207. doi: 10.11884/HPLPB201830.180112
    [6]Wang Xu, He Shiquan, Wang Tong. Modeling and analysis of electromagnetic interference from connectors in communication chassis[J]. High Power Laser and Particle Beams, 2017, 29(11): 113208. doi: 10.11884/HPLPB201729.170262
    [7]Wang Bangji, Liu Qingxiang, Zhou Lei, Li Xiangqiang, Zhang Jianqiong. Design of CAN controller IP core for intercom of phased array antenna[J]. High Power Laser and Particle Beams, 2017, 29(09): 093003. doi: 10.11884/HPLPB201729.170090
    [8]Ji Kaifu, Wei Guanghui, Wu Xinzhu, Pan Xiaodong, Hu Dezhou. Investigation of selection criteria of environmental E-field intensity measurement position in reverberation chamber[J]. High Power Laser and Particle Beams, 2017, 29(12): 123201. doi: 10.11884/HPLPB201729.170266
    [9]Yang Baoping, Chen Yongguang, Yang Luan, Liu Jun. A blind separating method for asynchronous nonorthogonal frequency hopping network[J]. High Power Laser and Particle Beams, 2015, 27(10): 103251. doi: 10.11884/HPLPB201527.103251
    [10]Zeng Ming, Shen Jianxin, Liang Chun, Niu Saisai. Retinal image semi-blind deconvolution restoration based on dual tree complex transform[J]. High Power Laser and Particle Beams, 2014, 26(05): 051020. doi: 10.11884/HPLPB201426.051020
    [11]Wu Guoqing, Song Lei, Shen Weichao, . Blind separation methods of signals in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26(07): 073215. doi: 10.11884/HPLPB201426.073215
    [12]Tang Yi’nan, Zhao Wei, Xie Xiaoping. Atmospheric channel simplification single scatter model[J]. High Power Laser and Particle Beams, 2013, 25(01): 22-26. doi: 10.3788/HPLPB20132501.0022
    [13]Zeng Xianqiang, Jing Lan, Long Yindong, Yao Ze’en, Guo Yuhui. Real-time data exchange of power supply digital adjustor of HIRFL-CSR[J]. High Power Laser and Particle Beams, 2012, 24(12): 2897-2900. doi: 10.3788/HPLPB20122412.2897
    [14]chen bo, cheng chengqi, guo shide, pu guoliang, geng zexun. Unsymmetrical multi-limit iterative blind deconvolution algorithm for adaptive optics image restoration[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [15]jiao xixiang, jing lan, long yindong, qiao weimin, liu wufeng, ma yunhai. Design of digital adjustor applied to power supply system for HIRFL-CSR[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [16]guan yonghong, wang penglai, jiang yuefeng. Reconstruction of flash radiographic image based on Bayesian approach[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [17]tan liying, xie wanqing, ma jing, yang yuqiang, liu qingfeng. Effect of non-Gaussian deformation on pointing error in inter-satellite laser communication systems[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- .
    [18]wu wei, zhou jinpeng, wang xingshu, qin shiqiao. Design of matched filter for target recognition in cloud background[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [19]han liqiang, wang qi, shida katsunori, li zhiquan. Improving fiber coupling efficiency of free space optical communication using blind optimization wavefront correction[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [20]guan yonghong, jing yuefeng. Adaptive reconstruction of flash radiographic image[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
  • Cited by

    Periodical cited type(4)

    1. 张永光. RM码特征分析. 微电子学与计算机. 2020(05): 39-42 .
    2. 刘洁,刘凯. 基于深度学习的纠错编码方式识别. 电子测量技术. 2019(16): 154-158 .
    3. 龙浪,杨俊安,刘辉,梁宗伟. 基于分析矩阵零均值比的CDL卷积交织盲识别. 系统工程与电子技术. 2018(08): 1702-1707 .
    4. 龙浪,杨俊安,刘辉,梁宗伟. 基于归一化秩特征的交织类型盲识别. 数据采集与处理. 2018(06): 1041-1049 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.9 %FULLTEXT: 24.9 %META: 74.1 %META: 74.1 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 0.1 %China: 0.1 %India: 0.1 %India: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %北京: 19.2 %北京: 19.2 %南京: 0.2 %南京: 0.2 %台州: 0.5 %台州: 0.5 %周口: 0.1 %周口: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.6 %张家口: 0.6 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.1 %杭州: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.4 %湖州: 0.4 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 51.8 %西宁: 51.8 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %其他ChinaIndiaRussian Federation上海中山北京南京台州周口哥伦布天津广州张家口扬州新乡普洱杭州桃园武汉深圳温州湖州漯河石家庄福州秦皇岛芒廷维尤芝加哥苏州衡水衢州西宁西安运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1092) PDF downloads(41) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return