Citation: | Yang Yang, Zhu Bingli, Gou Yongsheng, et al. Sealed X-ray framing tube with CsI photocathode to achieve high detection efficiency and stability[J]. High Power Laser and Particle Beams, 2021, 33: 092001. doi: 10.11884/HPLPB202133.210192 |
[1] |
Bradley D K, Bell P M, Kilkenny J D, et al. High-speed gated X-ray imaging for ICF target experiments[J]. Review of Scientific Instruments, 1992, 63(10): 4813-4817. doi: 10.1063/1.1143571
|
[2] |
Chang Zenghu, Shan Bing, Liu Xiuqin, et al. Gated MCP framing camera with 60-ps exposure time[C]//Proceedings of SPIE 2549, Ultrahigh-and High-Speed Photography, Videography, and Photonics'95. 1995: 53-59.
|
[3] |
Yang Wenzheng, Bai Yonglin, Liu Baiyu, et al. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(2): 291-296.
|
[4] |
Oertel J A, Aragonez R, Archuleta T, et al. Gated X-ray detector for the National Ignition Facility[J]. Review of Scientific Instruments, 2006, 77: 10E308. doi: 10.1063/1.2227439
|
[5] |
曹柱荣, 王强强, 邓博, 等. 激光聚变极端环境下X光高速摄影技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112004. (Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004
|
[6] |
王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32(11):112002. (Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002
|
[7] |
Pawley C J, Deniz A V. Improved measurements of noise and resolution of X-ray framing cameras at 1−2 keV[J]. Review of Scientific Instruments, 2000, 71(3): 1286-1295. doi: 10.1063/1.1150497
|
[8] |
Henke B L, Liesegang J, Smith S D. Soft-X-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements[J]. Physical Review B, 1979, 19(6): 3004-3021. doi: 10.1103/PhysRevB.19.3004
|
[9] |
黎宇坤, 陈韬, 李晋, 等. CsI光阴极在10—100 keV X射线能区的响应灵敏度计算[J]. 物理学报, 2018, 67:085203. (Li Yukun, Chen Tao, Li Jin, et al. Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region[J]. Acta Physica Sinica, 2018, 67: 085203 doi: 10.7498/aps.67.20180029
|
[10] |
Xie Yuguang, Zhang Aiwu, Liu Yingbiao, et al. Influence of air exposure on CsI photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 689: 79-86.
|
[11] |
Chollet M, Ahr B, Walko D A, et al. Hard X-ray streak camera at the advanced photon source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649(1): 70-72.
|
[12] |
Opachich Y P, Kalantar D H, MacPhee A G, et al. High performance imaging streak camera for the National Ignition Facility[J]. Review of Scientific Instruments, 2012, 83: 125105. doi: 10.1063/1.4769753
|
[13] |
Henke B L, Knauer J P, Premaratne K. The characterization of X-ray photocathodes in the 0.1−10-keV photon energy region[J]. Journal of Applied Physics, 1981, 52(3): 1509-1520. doi: 10.1063/1.329789
|
[14] |
Boone J M, Seibert J A. An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670. doi: 10.1118/1.597953
|
[15] |
Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499
|
[16] |
Nagel S R, Trosseille C A, MacPhee A, et al. Evaluation of X-ray transmission photocathode detection issues in the energy range of 8-30 keV[C]//Proceedings of SPIE 11114, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. 2019: 1111416.
|
[17] |
Li Yaran, Mu Baozhong, Xie Qing, et al. Development of an X-ray eight-image Kirkpatrick–Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 2017, 56(12): 3311-3318. doi: 10.1364/AO.56.003311
|
[1] | Cai Hongbo, Zhou Cangtao, Jia Qing, Wu Sizhong, He Minqing, Cao Lihua, Chen Mo, Zhang Hua, Liu Jie, Zhu Shaoping, He Xiantu. Laser-driven relativistic electron beam for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032001. doi: 10.11884/HPLPB201527.032001 |
[2] | Tian Chao, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Bi Bi, Zhang Feng, Wang Weiwu, Gu Yuqiu, Zhang Baohan. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092010. doi: 10.11884/HPLPB201527.092010 |
[3] | Gu Yuqiu, Zhang Feng, Shan Lianqiang, Bi Bi, Chen Jiabin, Wei Lai, Li jin, Song Zifeng, Liu Zhongjie, Yang Zhuhua, Yu Minghai, Cui Bo, Zhang Yi, Liu Hongjie, Liu Dongxiao, Wang Weiwu, Dai Zenghai, Yang Yimeng, Yang Lei, Zhang Faqiang, Wu Xiaojun, Du Kai, Zhou Weimin, Cao Leifeng, Zhang Baohan, Wu Junfeng, Ren Guoli, Cai Hongbo, Wu Shizhong, Cao Lihua, Zhang Hua, Zhou Cangtao, He Xiantu. Initial indirect cone-in-shell fast ignition integrated experiment on Shengguang Ⅱ-updated facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 110101. doi: 10.11884/HPLPB201527.110101 |
[4] | Jiang Baibin, Li Guo, Du Kai, Wei Jianjun, Tong Weichao, Yuan Guanghui, Yang Hong. Effect of micro cutting force on fabrication of Au cone-wire target for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092002. doi: 10.11884/HPLPB201527.092002 |
[5] | Zhou Weimin, Shan Lianqiang, Wu Junfeng, Cai Hongbo, Liu Dongxiao, Liu Hongjie, Bi Bi, Zhang Feng, Wang Weiwu, Wu Fengjuan, Zhu Bin, Wu Yuchi, Wen Xianlun, He Yinglin, Zhou Cangtao, Cao Lihua, Wu Sizhong, Wei Lai, Cao Zhurong, Yuan Zheng, Yang Zhiwen, Gu Yuqiu, Zhang Baohan. Material mixing of cone-in-shell targets for indirect-drive fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032017. doi: 10.11884/HPLPB201527.032017 |
[6] | Wu Sizhong, Zhang Hua, Zhou Cangtao, Wu Junfeng, Cai Hongbo, Cao Lihua, He Minqing, Zhu Shaoping, He Xiantu. Energy deposition of fast electrons in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032010. doi: 10.11884/HPLPB201527.032010 |
[7] | Wang Yanbin. New concept and structure of fast ignition target[J]. High Power Laser and Particle Beams, 2015, 27(03): 032032. doi: 10.11884/HPLPB201527.032032 |
[8] | Bi Bi, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Cao Leifeng, Gu Yuqiu, Zhang Baohan. Implosion emission image processing for cone-shell target of fast ignition[J]. High Power Laser and Particle Beams, 2014, 26(09): 092002. doi: 10.11884/HPLPB201426.092002 |
[9] | Liu Meifang, Liu Yiyang, Shi Ruiting, Chen Sufen, Su Lin, Li Jing, Li Jie, Li Bo, Zhang Zhanwen. Effect of oil phase and water phase on wall thickness of polymer microspheres prepared by agitation method[J]. High Power Laser and Particle Beams, 2013, 25(06): 1370-1374. doi: 10.3788/HPLPB20132506.1370 |
[10] | Wang Wei, Fang Zhiheng, Jia Guo, Wang Ruirong, An Honghai, Xie Zhiyong, Ye Junjian, Zhou Huazhen, Wang Chen, Wu Jiang, Lei Anle, Fu Sizu. Direct-drive cylindrical target compression at Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(09): 2303-2306. doi: 10.3788/HPLPB20132509.2303 |
[11] | Zhou Weimin, Gu Yuqiu, Shan Lianqiang, Liu Hongjie, Liu Dongxiao, Zhang Baohan. Experiment on measurement of fuel symmetry and density of cone-in-shell target for fast ignition[J]. High Power Laser and Particle Beams, 2013, 25(12): 3135-3138. doi: 3135 |
[12] | Wang Yanbin. Parameter window for fast ignition calculated by Monte-Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(01): 123-128. |
[13] | zhou yi, shen chao, zhang junwei, wang xiao, zhou hai. Structure design of high accuracy 2×2 array grating[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- . |
[14] | chen mo. Collisional effects on hot electron transport in a dense solid carbon thin foil irradiated by ultrahigh intensity lasers[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[15] | yang yuchuan, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin, luo hui. Laser driver beam combination for fast ignition[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[16] | fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[17] | xiong jun, wang chen, fang zhi-heng, wang rui-rong, wang shi-ji. Influnce of Au cone on distribution of forward hot electrons[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- . |
[18] | zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Design of an arrayed grating compressor based on far-field[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- . |
[19] | lu rong-hua, han shen-sheng. Model of fast ignition by exploding push[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
[20] | zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- . |
1. | Xiang Tang,Juexuan Hao,Yin Shi. Electron injection and acceleration in a twisted laser driven by the light fan. High Power Laser Science and Engineering. 2024(06): 156-167 . ![]() | |
2. | 段杭杭,陈华英,刘三秋. 激光偏振状态对磁化等离子体中电磁孤波的影响. 强激光与粒子束. 2022(02): 142-148 . ![]() |