Citation: | Zhang Xingyun, Luo Fanglin, Li Nan, et al. Phase diversity wavefront sensing and image reconstruction[J]. High Power Laser and Particle Beams, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203 |
[1] |
张逸新, 迟泽英. 光波在大气中的传播与成像[M]. 北京: 国防工业出版社, 1997.
Zhang Yixin, Chi Zeying. Propagation and imaging of light waves in atmosphere[M]. Beijing: National Defense Industry Press, 1997.
|
[2] |
杨磊. Phase diversity波前重构的研究及在高分辨图像复原中的应用[D]. 云南: 中国科学院研究生院云南天文台, 2007.
Yang Lei. Researches of the Phase diversity wave-front reconstruction techniques and its application in the high resolution image restoration[D]. Yunnan: Yunnan Observatory, Graduate School of Chinese Academy of Sciences, 2007
|
[3] |
Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]//Applications of Digital Image Processing III, 1979: 32-39.
|
[4] |
Fusco T, Michau V, Mugnier L, et al. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics[C]//International Conference on Space Optics, 2014.
|
[5] |
Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5): 829-832.
|
[6] |
Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase[J]. Scientific Reports, 2017, 7(1): 15361. doi: 10.1038/s41598-017-15597-x
|
[7] |
Nesterov Y. Gradient methods for minimizing composite objective function[J]. Core Discussion Papers, 2007, 140(1): 125-161.
|
[8] |
Shewchuk J R. An introduction to the conjugate gradient method without the agonizing pain[M]. Pittsburgh (USA): Carnegie Mellon University, 1994.
|
[9] |
张小鸣, 李永新. 基于牛顿迭代法的高精度快速开方算法[J]. 电力自动化设备, 2008, 28(3):75-77. (Zhang Xiaoming, Li Yongxin. High-precision and fast square root algorithm based on Newton iteration method[J]. Electric Power Automation Equipment, 2008, 28(3): 75-77 doi: 10.3969/j.issn.1006-6047.2008.03.018
|
[10] |
Li Donghui, Fukushima M. On the global convergence of the BFGS method for nonconvex unconstrained optimization problems[J]. SIAM Journal on Optimization, 2001, 11(4): 1054-1064. doi: 10.1137/S1052623499354242
|
[11] |
Kirkpatrick S, Gelatt C D, VecchiM P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
|
[12] |
Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MlT Press, 1992.
|
[13] |
Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995.
|
[14] |
Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval[J]. Optics Express, 2016, 24(22): 25704. doi: 10.1364/OE.24.025704
|
[15] |
徐梓浩. 基于相位差法的高分辨率液晶自适应光学技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.
Xu Zihao. Research on high-resolution liquid crystal adaptive optics technique with phase diversity[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.
|
[16] |
Ge Yingjian, Wang Shengqian, Xian Hao. Phase diversity method based on an improved particle swarm algorithm used in co-phasing error detection[J]. Applied Optics, 2020, 59(31): 9735-9743. doi: 10.1364/AO.404707
|
[17] |
Qi Xin, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 2019, 27(18): 26102-26119. doi: 10.1364/OE.27.026102
|
[18] |
Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 2020, 20(17): 4877. doi: 10.3390/s20174877
|
[19] |
Wu Daosheng, Yang Chengliang, Zhang Peiguang, et al. Phase diversity technique with sparse regularization in liquid crystal adaptive optics system[J]. Journal of Astronomical Telescopes Instruments and Systems, 2018, 4(1).
|
[20] |
李斐, 饶长辉. 相位差法波前传感系统自身误差的分析及消除方法[J]. 强激光与粒子束, 2011, 23(3):599-605. (Li Fei, Rao Changhui. Analysis and elimination of errors in phase diversity wavefront sensing system[J]. High Power Laser and Particle Beams, 2011, 23(3): 599-605 doi: 10.3788/HPLPB20112303.0599
|
[21] |
王欣, 赵达尊. 图像噪声对相位变更波前传感的影响研究[J]. 光学学报, 2009, 29(8):2142-2146. (Wang Xin, Zhao Dazun. Influence of noise to phase diversity wavefront sensing[J]. Acta Optica Sinica, 2009, 29(8): 2142-2146 doi: 10.3788/AOS20092908.2142
|
[22] |
Yu Hongli, Yang Chengliang, Xu Zihao, et al. Analysis and reduction of errors caused by Poisson noise for phase diversity technique[J]. Optics Express, 2016, 24(19): 22034-22042. doi: 10.1364/OE.24.022034
|
[23] |
Li Dequan, Xu Shuyan, Wang Dong, et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express, 2019, 27(16): 22846-22854. doi: 10.1364/OE.27.022846
|
[24] |
Paxman R G, Fienup J R. Optical misalignment sensing and image reconstruction using phase diversity[J]. Journal of the Optical Society of America A, 1988, 5(5): 914-923.
|
[25] |
Lofdahl M G, Duncan A L, Paxman R G, et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II Telescope[J]. Astronomical Telescopes & Instrumentation, 1998, 3356: 1190-1201.
|
[26] |
Blanc A, Fusco T, Hartung M, et al. Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique[J]. Astronomy & Astrophysics, 2003, 399: 373-83.
|
[27] |
Georges J A, Dorrance P, Gleichman K, et al. High-speed closed-loop dual deformable-mirror phase-diversity testbed[C]. Proceedings of SPIE, 2007, 6711: 671105.
|
[28] |
Lamb M, Correia C, Sauvage J F, et al. Exploring the operational effects of phase diversity for the calibration of non-common path errors on NFIRAOS[C]//SPIE Astronomical Telescopes + Instrumentation, 2016.
|
[29] |
Carreras R A, Restaino S R. Field experimental results using phase diversity on a binary star[J]. NASA Technical Report, 1996: 97.
|
[30] |
Hirzberger J, Feller A, Riethmüller T, et al. Performance validation of phase diversity image reconstruction techniques[J]. Astronomy & Astrophysics, 2011, 529: 1-5.
|
[31] |
鲍华, 饶长辉, 田雨, 等. 自适应光学图像事后重建技术研究进展[J]. 光电工程, 2018, 45(3):58-67. (Bao Hua, Rao Changhui, Tian Yu, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 58-67
|
[32] |
Wu Daosheng, Yang Chengliang, Li Hao, et al. Astronomical observation by 2-meter telescope based on liquid crystal adaptive optics with phase diversity[J]. Optics Communications, 2019, 439: 129-132. doi: 10.1016/j.optcom.2019.01.036
|
[33] |
明名, 陈涛, 徐天爽. 基于相位差异技术的车载白天高分辨成像系统[J]. 光子学报, 2019, 48(3):129-137. (Ming Ming, Chen Tao, Xu Tianshuang. Vehicular daytime high-resolution imaging system based on phase-diversity technology[J]. Acta Photonica Sinica, 2019, 48(3): 129-137
|