Volume 33 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Zhang Xingyun, Luo Fanglin, Li Nan, et al. Phase diversity wavefront sensing and image reconstruction[J]. High Power Laser and Particle Beams, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203
Citation: Zhang Xingyun, Luo Fanglin, Li Nan, et al. Phase diversity wavefront sensing and image reconstruction[J]. High Power Laser and Particle Beams, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203

Phase diversity wavefront sensing and image reconstruction

doi: 10.11884/HPLPB202133.210203
  • Received Date: 2021-05-28
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-08-26
  • Publish Date: 2021-08-15
  • Phase diversity technology can directly use the intensity information of two or more images to reconstruct the wavefront information and high-resolution image of the target. It has the advantages of simple optical setup, low cost and suitable for extended targets. It has been widely used in system aberration detection and target image reconstruction of telescopes. The key point of phase diversity wavefront sensing is to solve the optimization problem of nonlinear cost function. It needs to avoid falling into local extremum and reduce the calculation time to meet the demand of real-time sensing of dynamic wavefronts. Meanwhile, regularization and denoising are usually needed to improve the quality of reconstructed image. This paper mainly introduces the basic principle of phase diversity technology, as well as the research progresses in recent years, and prospects for future development of this technology.
  • loading
  • [1]
    张逸新, 迟泽英. 光波在大气中的传播与成像[M]. 北京: 国防工业出版社, 1997.

    Zhang Yixin, Chi Zeying. Propagation and imaging of light waves in atmosphere[M]. Beijing: National Defense Industry Press, 1997.
    [2]
    杨磊. Phase diversity波前重构的研究及在高分辨图像复原中的应用[D]. 云南: 中国科学院研究生院云南天文台, 2007.

    Yang Lei. Researches of the Phase diversity wave-front reconstruction techniques and its application in the high resolution image restoration[D]. Yunnan: Yunnan Observatory, Graduate School of Chinese Academy of Sciences, 2007
    [3]
    Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]//Applications of Digital Image Processing III, 1979: 32-39.
    [4]
    Fusco T, Michau V, Mugnier L, et al. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics[C]//International Conference on Space Optics, 2014.
    [5]
    Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5): 829-832.
    [6]
    Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase[J]. Scientific Reports, 2017, 7(1): 15361. doi: 10.1038/s41598-017-15597-x
    [7]
    Nesterov Y. Gradient methods for minimizing composite objective function[J]. Core Discussion Papers, 2007, 140(1): 125-161.
    [8]
    Shewchuk J R. An introduction to the conjugate gradient method without the agonizing pain[M]. Pittsburgh (USA): Carnegie Mellon University, 1994.
    [9]
    张小鸣, 李永新. 基于牛顿迭代法的高精度快速开方算法[J]. 电力自动化设备, 2008, 28(3):75-77. (Zhang Xiaoming, Li Yongxin. High-precision and fast square root algorithm based on Newton iteration method[J]. Electric Power Automation Equipment, 2008, 28(3): 75-77 doi: 10.3969/j.issn.1006-6047.2008.03.018
    [10]
    Li Donghui, Fukushima M. On the global convergence of the BFGS method for nonconvex unconstrained optimization problems[J]. SIAM Journal on Optimization, 2001, 11(4): 1054-1064. doi: 10.1137/S1052623499354242
    [11]
    Kirkpatrick S, Gelatt C D, VecchiM P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
    [12]
    Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MlT Press, 1992.
    [13]
    Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995.
    [14]
    Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval[J]. Optics Express, 2016, 24(22): 25704. doi: 10.1364/OE.24.025704
    [15]
    徐梓浩. 基于相位差法的高分辨率液晶自适应光学技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    Xu Zihao. Research on high-resolution liquid crystal adaptive optics technique with phase diversity[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.
    [16]
    Ge Yingjian, Wang Shengqian, Xian Hao. Phase diversity method based on an improved particle swarm algorithm used in co-phasing error detection[J]. Applied Optics, 2020, 59(31): 9735-9743. doi: 10.1364/AO.404707
    [17]
    Qi Xin, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 2019, 27(18): 26102-26119. doi: 10.1364/OE.27.026102
    [18]
    Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 2020, 20(17): 4877. doi: 10.3390/s20174877
    [19]
    Wu Daosheng, Yang Chengliang, Zhang Peiguang, et al. Phase diversity technique with sparse regularization in liquid crystal adaptive optics system[J]. Journal of Astronomical Telescopes Instruments and Systems, 2018, 4(1).
    [20]
    李斐, 饶长辉. 相位差法波前传感系统自身误差的分析及消除方法[J]. 强激光与粒子束, 2011, 23(3):599-605. (Li Fei, Rao Changhui. Analysis and elimination of errors in phase diversity wavefront sensing system[J]. High Power Laser and Particle Beams, 2011, 23(3): 599-605 doi: 10.3788/HPLPB20112303.0599
    [21]
    王欣, 赵达尊. 图像噪声对相位变更波前传感的影响研究[J]. 光学学报, 2009, 29(8):2142-2146. (Wang Xin, Zhao Dazun. Influence of noise to phase diversity wavefront sensing[J]. Acta Optica Sinica, 2009, 29(8): 2142-2146 doi: 10.3788/AOS20092908.2142
    [22]
    Yu Hongli, Yang Chengliang, Xu Zihao, et al. Analysis and reduction of errors caused by Poisson noise for phase diversity technique[J]. Optics Express, 2016, 24(19): 22034-22042. doi: 10.1364/OE.24.022034
    [23]
    Li Dequan, Xu Shuyan, Wang Dong, et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express, 2019, 27(16): 22846-22854. doi: 10.1364/OE.27.022846
    [24]
    Paxman R G, Fienup J R. Optical misalignment sensing and image reconstruction using phase diversity[J]. Journal of the Optical Society of America A, 1988, 5(5): 914-923.
    [25]
    Lofdahl M G, Duncan A L, Paxman R G, et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II Telescope[J]. Astronomical Telescopes & Instrumentation, 1998, 3356: 1190-1201.
    [26]
    Blanc A, Fusco T, Hartung M, et al. Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique[J]. Astronomy & Astrophysics, 2003, 399: 373-83.
    [27]
    Georges J A, Dorrance P, Gleichman K, et al. High-speed closed-loop dual deformable-mirror phase-diversity testbed[C]. Proceedings of SPIE, 2007, 6711: 671105.
    [28]
    Lamb M, Correia C, Sauvage J F, et al. Exploring the operational effects of phase diversity for the calibration of non-common path errors on NFIRAOS[C]//SPIE Astronomical Telescopes + Instrumentation, 2016.
    [29]
    Carreras R A, Restaino S R. Field experimental results using phase diversity on a binary star[J]. NASA Technical Report, 1996: 97.
    [30]
    Hirzberger J, Feller A, Riethmüller T, et al. Performance validation of phase diversity image reconstruction techniques[J]. Astronomy & Astrophysics, 2011, 529: 1-5.
    [31]
    鲍华, 饶长辉, 田雨, 等. 自适应光学图像事后重建技术研究进展[J]. 光电工程, 2018, 45(3):58-67. (Bao Hua, Rao Changhui, Tian Yu, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 58-67
    [32]
    Wu Daosheng, Yang Chengliang, Li Hao, et al. Astronomical observation by 2-meter telescope based on liquid crystal adaptive optics with phase diversity[J]. Optics Communications, 2019, 439: 129-132. doi: 10.1016/j.optcom.2019.01.036
    [33]
    明名, 陈涛, 徐天爽. 基于相位差异技术的车载白天高分辨成像系统[J]. 光子学报, 2019, 48(3):129-137. (Ming Ming, Chen Tao, Xu Tianshuang. Vehicular daytime high-resolution imaging system based on phase-diversity technology[J]. Acta Photonica Sinica, 2019, 48(3): 129-137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1630) PDF downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return