Citation: | Zhao Qixiang, Feng Jinjun, Lü You, et al. Study on nonstationary oscillation in continuous frequency tunable terahertz gyrotron[J]. High Power Laser and Particle Beams, 2021, 33: 093007. doi: 10.11884/HPLPB202133.210205 |
[1] |
Nanni E A, Barnes A B, Griffin R G, et al. THz dynamic nuclear polarization NMR[J]. IEEE Transactions onTerahertz Science and Technology, 2011, 1(1): 145-163. doi: 10.1109/TTHZ.2011.2159546
|
[2] |
Griffin R G, Prisner T F. High field dynamic nuclear polarization—the renaissance[J]. Physical Chemistry Chemical Physics, 2010, 12(22): 5737-5740. doi: 10.1039/c0cp90019b
|
[3] |
Masion A, Alexandre A, Ziarelli F, et al. Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles[J]. Scientific Reports, 2017, 7: 3430. doi: 10.1038/s41598-017-03659-z
|
[4] |
Liao S Y, Lee M, Wang T, et al. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location[J]. Journal of Biomolecular NMR, 2016, 64(3): 223-237. doi: 10.1007/s10858-016-0023-3
|
[5] |
Leggett J, Hunter R, Granwehr J, et al. A dedicated spectrometer for dissolution DNPNMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2010, 12(22): 5883-5892. doi: 10.1039/c002566f
|
[6] |
Plainchont B, Berruyer P, Dumez J N, et al. Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry[J]. Analytical Chemistry, 2018, 90(6): 3639-3650. doi: 10.1021/acs.analchem.7b05236
|
[7] |
Mompeán M, Sánchez-Donoso R M, De LaHoz A, et al. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization[J]. Nature Communications, 2018, 9: 108. doi: 10.1038/s41467-017-02575-0
|
[8] |
李志良, 冯进军, 蔡军. 太赫兹回旋管和动态核极化核磁共振的研究发展[J]. 真空科学与技术学报, 2015, 35(6):744-751. (Li Zhiliang, Feng Jinjun, Cai Jun. Latest progress of THz gyrotron and dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 744-751
|
[9] |
李志良, 冯进军, 刘本田, 等. DNP-NMR用263 GHz回旋振荡管高频系统的研究[J]. 真空科学与技术学报, 2017, 37(7):693-698. (Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Circuit design of 263 GHz gyrotrono scillator for dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(7): 693-698
|
[10] |
史少辉, 韩万强, 封顺珍, 等. 频率可调太赫兹回旋振荡管互作用电路的设计与研究[J]. 微波学报, 2020, 36(3):59-64. (Shi Shaohui, Han Wanqiang, Feng Shunzhen, et al. Investigation and design of a frequency-tunable terahertz gyrotron oscillator[J]. Journal of Microwaves, 2020, 36(3): 59-64
|
[11] |
宋韬, 王维, 刘頔威, 等. 应用于动态核极化核磁共振的太赫兹回旋管[J]. 中国激光, 2019, 46:0614001. (Song Tao, Wang Wei, Liu Diwei, et al. Terahertz gyrotron used for dynamic nuclear-polarization-enhanced nuclear magnetic resonance[J]. Chinese Journal of Lasers, 2019, 46: 0614001 doi: 10.3788/CJL201946.0614001
|
[12] |
雷蕾, 刘頔威, 鄢扬. 0.42 THz频率连续可调同轴回旋管[J]. 红外与毫米波学报, 2013, 32(6):559-562. (Lei Lei, Liu Diwei, Yan Yang. Continuous frequency tunable 0.42 THz coaxial gyrotron[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 559-562 doi: 10.3724/SP.J.1010.2013.00559
|
[13] |
Temkin R J. Development of terahertz gyrotrons for spectroscopy at MIT[J]. Terahertz Science and Technology, 2014, 7(2): 1-9.
|
[14] |
Hornstein M K, Bajaj V S, Griffin R G, et al. Design of a 460 GHz second harmonic gyrotron oscillator for use in dynamic nuclear polarization[C]//Proceedings of the Twenty Seventh International Conference on Infrared and Millimeter Waves. San Diego: IEEE, 2002: 193-194.
|
[15] |
Idehara T, Kosuga K, Agusu L, et al. Continuously frequency tunable high power sub-THz radiation source—gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy[J]. Journal ofInfrared, Millimeter, and Terahertz Waves, 2010, 31(7): 775-790. doi: 10.1007/s10762-010-9643-y
|
[16] |
Glyavin M Y, Chirkov A V, Denisov G G, et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media[J]. Review ofScientific Instruments, 2015, 86: 054705. doi: 10.1063/1.4921322
|
[17] |
Yoon D, Soundararajan M, Cuanillon P, et al. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz[J]. Journal of Magnetic Resonance, 2016, 262: 62-67. doi: 10.1016/j.jmr.2015.11.008
|
[18] |
Braunmüller F. Gyrotron physics from linear to chaotic regimes: experiment and numerical modeling[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2016: 50-76.
|
[19] |
Airila M I, Dumbrajs O, Reinfelds A, et al. Nonstationary oscillations in gyrotrons[J]. Physicsof Plasmas, 2001, 8(10): 4608-4612. doi: 10.1063/1.1402173
|
[20] |
Kern S. Numerische simulation der gyrotron-wechselwirkung in koaxialen resonatoren[D]. Karlsruhe: Universität Karlsruhe, 1996.
|
[21] |
Kartikeyan M V, Borie E, Thumm M K A. Gyrotrons— high power microwave and millimeter wave technology[M]. Berlin: Springer Press, 2003.
|
[22] |
Dumbrajs O, Nusinovich G S. Self-consistent non-stationary theory of the gyrotron[J]. Physics of Plasmas, 2016, 23: 083125. doi: 10.1063/1.4961962
|
[23] |
Li Zhengdi, Du Chaohai, Qi Xiangbo, et al. A 0.33-THz second-harmonic frequency-tunable gyrotron[J]. Chinese Physics B, 2016, 25: 029401.
|
[24] |
Zhao Qixiang, Yu Sheng, Zhang Yanyan, et al. Investigation of the influence of electron beam quality on the operation in 0.42-THz second harmonic gyrotron[J]. IEEE Transactions on Plasma Science, 2016, 44(5): 749-754. doi: 10.1109/TPS.2016.2551734
|
[25] |
张延庆. 频率超宽带连续可调太赫兹回旋管电子枪研究[D]. 成都: 电子科技大学, 2020.
Zhang Yanqing. Research on magnetron injected gun of a ultra-wideband continuously adjustable terahertz gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020
|
[26] |
刘冲, 赵青, 胡以怀, 等. 双注磁控注入电子枪[J]. 强激光与粒子束, 2014, 26:083005. (Liu Chong, Zhao Qing, Hu Yihuai, et al. Double-beam magnetron injection gun[J]. High Power Laser and Particle Beams, 2014, 26: 083005 doi: 10.11884/HPLPB201426.083005
|