Processing math: 100%
Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation: Zhao Qixiang, Feng Jinjun, Lü You, et al. Study on nonstationary oscillation in continuous frequency tunable terahertz gyrotron[J]. High Power Laser and Particle Beams, 2021, 33: 093007. doi: 10.11884/HPLPB202133.210205

Study on nonstationary oscillation in continuous frequency tunable terahertz gyrotron

doi: 10.11884/HPLPB202133.210205
  • Received Date: 2021-05-29
  • Rev Recd Date: 2021-07-22
  • Available Online: 2021-08-09
  • Publish Date: 2021-09-15
  • Terahertz gyrotron can achieve high output power and has a certain frequency tuning range, thus it is an ideal high power terahertz radiation source for NMR spectroscopy system. A 263 GHz, TE5,2 fundamental harmonic frequency continuously tunable gyrotron is designed, the corresponding frequency tuning range can reach 1.4 GHz through adjusting the magnetic field. The unstable oscillation state of the designed gyrotron is studied by using the time domain multi-mode multi frequency self-consistent nonlinear theory. The results show that in the magnetic field range of low order axial mode, when the operating current is greater than the starting current, the continuously tuned gyrotron enters the stable state, where the high order axial mode is suppressed, and the output power of TE5,2 remains unchanged with time. When the current increases, the competition between axial modes causes the gyrotron to enter the unstable oscillation state from the stable state, the output power of TE5,2 oscillates with time and the interaction efficiency decreases greatly. With the further increase of current, the gyrotron returns to another stable state different from that of low current. It is also found that the initial current increases with the increase of magnetic field. The research of this paper has a certain guiding significance for the development of continuously tuned THz gyrotron for DNP-NMR applications.
  • [1]
    Nanni E A, Barnes A B, Griffin R G, et al. THz dynamic nuclear polarization NMR[J]. IEEE Transactions onTerahertz Science and Technology, 2011, 1(1): 145-163. doi: 10.1109/TTHZ.2011.2159546
    [2]
    Griffin R G, Prisner T F. High field dynamic nuclear polarization—the renaissance[J]. Physical Chemistry Chemical Physics, 2010, 12(22): 5737-5740. doi: 10.1039/c0cp90019b
    [3]
    Masion A, Alexandre A, Ziarelli F, et al. Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles[J]. Scientific Reports, 2017, 7: 3430. doi: 10.1038/s41598-017-03659-z
    [4]
    Liao S Y, Lee M, Wang T, et al. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location[J]. Journal of Biomolecular NMR, 2016, 64(3): 223-237. doi: 10.1007/s10858-016-0023-3
    [5]
    Leggett J, Hunter R, Granwehr J, et al. A dedicated spectrometer for dissolution DNPNMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2010, 12(22): 5883-5892. doi: 10.1039/c002566f
    [6]
    Plainchont B, Berruyer P, Dumez J N, et al. Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry[J]. Analytical Chemistry, 2018, 90(6): 3639-3650. doi: 10.1021/acs.analchem.7b05236
    [7]
    Mompeán M, Sánchez-Donoso R M, De LaHoz A, et al. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization[J]. Nature Communications, 2018, 9: 108. doi: 10.1038/s41467-017-02575-0
    [8]
    李志良, 冯进军, 蔡军. 太赫兹回旋管和动态核极化核磁共振的研究发展[J]. 真空科学与技术学报, 2015, 35(6):744-751. (Li Zhiliang, Feng Jinjun, Cai Jun. Latest progress of THz gyrotron and dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 744-751
    [9]
    李志良, 冯进军, 刘本田, 等. DNP-NMR用263 GHz回旋振荡管高频系统的研究[J]. 真空科学与技术学报, 2017, 37(7):693-698. (Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Circuit design of 263 GHz gyrotrono scillator for dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(7): 693-698
    [10]
    史少辉, 韩万强, 封顺珍, 等. 频率可调太赫兹回旋振荡管互作用电路的设计与研究[J]. 微波学报, 2020, 36(3):59-64. (Shi Shaohui, Han Wanqiang, Feng Shunzhen, et al. Investigation and design of a frequency-tunable terahertz gyrotron oscillator[J]. Journal of Microwaves, 2020, 36(3): 59-64
    [11]
    宋韬, 王维, 刘頔威, 等. 应用于动态核极化核磁共振的太赫兹回旋管[J]. 中国激光, 2019, 46:0614001. (Song Tao, Wang Wei, Liu Diwei, et al. Terahertz gyrotron used for dynamic nuclear-polarization-enhanced nuclear magnetic resonance[J]. Chinese Journal of Lasers, 2019, 46: 0614001 doi: 10.3788/CJL201946.0614001
    [12]
    雷蕾, 刘頔威, 鄢扬. 0.42 THz频率连续可调同轴回旋管[J]. 红外与毫米波学报, 2013, 32(6):559-562. (Lei Lei, Liu Diwei, Yan Yang. Continuous frequency tunable 0.42 THz coaxial gyrotron[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 559-562 doi: 10.3724/SP.J.1010.2013.00559
    [13]
    Temkin R J. Development of terahertz gyrotrons for spectroscopy at MIT[J]. Terahertz Science and Technology, 2014, 7(2): 1-9.
    [14]
    Hornstein M K, Bajaj V S, Griffin R G, et al. Design of a 460 GHz second harmonic gyrotron oscillator for use in dynamic nuclear polarization[C]//Proceedings of the Twenty Seventh International Conference on Infrared and Millimeter Waves. San Diego: IEEE, 2002: 193-194.
    [15]
    Idehara T, Kosuga K, Agusu L, et al. Continuously frequency tunable high power sub-THz radiation source—gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy[J]. Journal ofInfrared, Millimeter, and Terahertz Waves, 2010, 31(7): 775-790. doi: 10.1007/s10762-010-9643-y
    [16]
    Glyavin M Y, Chirkov A V, Denisov G G, et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media[J]. Review ofScientific Instruments, 2015, 86: 054705. doi: 10.1063/1.4921322
    [17]
    Yoon D, Soundararajan M, Cuanillon P, et al. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz[J]. Journal of Magnetic Resonance, 2016, 262: 62-67. doi: 10.1016/j.jmr.2015.11.008
    [18]
    Braunmüller F. Gyrotron physics from linear to chaotic regimes: experiment and numerical modeling[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2016: 50-76.
    [19]
    Airila M I, Dumbrajs O, Reinfelds A, et al. Nonstationary oscillations in gyrotrons[J]. Physicsof Plasmas, 2001, 8(10): 4608-4612. doi: 10.1063/1.1402173
    [20]
    Kern S. Numerische simulation der gyrotron-wechselwirkung in koaxialen resonatoren[D]. Karlsruhe: Universität Karlsruhe, 1996.
    [21]
    Kartikeyan M V, Borie E, Thumm M K A. Gyrotrons— high power microwave and millimeter wave technology[M]. Berlin: Springer Press, 2003.
    [22]
    Dumbrajs O, Nusinovich G S. Self-consistent non-stationary theory of the gyrotron[J]. Physics of Plasmas, 2016, 23: 083125. doi: 10.1063/1.4961962
    [23]
    Li Zhengdi, Du Chaohai, Qi Xiangbo, et al. A 0.33-THz second-harmonic frequency-tunable gyrotron[J]. Chinese Physics B, 2016, 25: 029401.
    [24]
    Zhao Qixiang, Yu Sheng, Zhang Yanyan, et al. Investigation of the influence of electron beam quality on the operation in 0.42-THz second harmonic gyrotron[J]. IEEE Transactions on Plasma Science, 2016, 44(5): 749-754. doi: 10.1109/TPS.2016.2551734
    [25]
    张延庆. 频率超宽带连续可调太赫兹回旋管电子枪研究[D]. 成都: 电子科技大学, 2020.

    Zhang Yanqing. Research on magnetron injected gun of a ultra-wideband continuously adjustable terahertz gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020
    [26]
    刘冲, 赵青, 胡以怀, 等. 双注磁控注入电子枪[J]. 强激光与粒子束, 2014, 26:083005. (Liu Chong, Zhao Qing, Hu Yihuai, et al. Double-beam magnetron injection gun[J]. High Power Laser and Particle Beams, 2014, 26: 083005 doi: 10.11884/HPLPB201426.083005
  • Relative Articles

    [1]Ma Liehua, Chen Shuang, Li Hongtao, Peng Xusheng, Zhang Botao, Li Bo, Wang Cheng, Ai Jie. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35(11): 119002. doi: 10.11884/HPLPB202335.230130
    [2]Huang Zhanchang, Zhang Chengjun, Chen Jinchuan, Yang Jianlun, Li Linbo, You Haibo, Wang Dongming, You Wenhao, He Chao, Yang Gaozhao, Zhao Xueshui, Xie Hongwei. Reliability experimental study of optical streak camera[J]. High Power Laser and Particle Beams, 2022, 34(2): 022001. doi: 10.11884/HPLPB202234.210382
    [3]Ma Chenggang, Li Hongtao, Deng Minghai, Cao Ningxiang, Mo Tengfu, Wang Xiao, Zhang Zhiqiang. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32(2): 025018. doi: 10.11884/HPLPB202032.190378
    [4]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [5]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [6]Cao Fei, Cheng Jian, Pan Zeyue, Chen Yuanyuan. Precision voltage-controlled constant current source for atomic oxygen ground simulation equipment[J]. High Power Laser and Particle Beams, 2015, 27(08): 082002. doi: 10.11884/HPLPB201527.082002
    [7]Zhou Songqing, Guan Xiaowei, Zhang Shiqiang, Qu Pubo, Sun Yanhong, He Minbo. Application of GO methodology to reliability analysis in solid-state laser system[J]. High Power Laser and Particle Beams, 2014, 26(02): 021005. doi: 10.3788/HPLPB201426.021005
    [8]Zhao Juan, Li Bo, Yu Zhiguo, Cao Ningxiang, Huang Lei, Li Xiqin, Huang Bin, Wang Wei, Li Yawei. Design of sampling resistor of high power constant-current source[J]. High Power Laser and Particle Beams, 2012, 24(04): 925-928. doi: 10.3788/HPLPB20122404.0925
    [9]jia zhanqiang, cai jinyan, liang yuying, han chunhui. Reliability assessment of metallized film pulse capacitor[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [11]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]zhao juan, cao kefeng, cao ningxiang, huang bin, yu zhiguo, li xiqin, li bo, huang lei, wang wei, zhu lijun. Development of HL80 low ripple high current computer-controlling constant current source[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]cao ronggang, zou jun, yuan jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]meng fan-jiang, guo li-hong, yang gui-long, li dian-jun. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [15]chen guang-yu, yang dong, zhang xiao-min, he shao-bo, zheng wan-guo, you yong. Reliability analysis of Xe-flashlamps of disk amplifier subsystems for laser facility[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [16]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [17]zhao jian-yin, sun quan, zhou jing-lun, he shao-bo, wei xiao-feng. Failure analysis of metallized film pulse capacitors based on accelerated degradation data[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [18]zhao jian-yin, liu fang, sun quan, zhou jing-lun, wei xiao-feng, he shao-bo. Reliability assessment of metallized film capacitors using degradation failure model[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [19]weng ling-wen, niu zhong-xia, lin jing-yu, zhou dong-fang, hou de-ting. Application of BLT equation to electromagnetic interaction of high power microwave[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [20]fu si-zu, huang xiu-guang, wu jiang, ma min xun, he ju-hua, ye jun-jian, gu yuan. Planarity and stability of shock driven directly by multi-beam laserfrom “Shenguang-II” laser facility[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
  • Cited by

    Periodical cited type(4)

    1. 李胜铭,于艺旋,王义普,吴振宇. 赛教融合的数控开关恒流源设计. 实验室科学. 2020(04): 74-79 .
    2. 程俊平,周长林,余道杰,徐志坚,张栋耀. 基于供电网络传导耦合的FPGA电磁敏感特性分析. 强激光与粒子束. 2019(02): 64-70 . 本站查看
    3. 赵娟,曹宁翔,黄斌,李波,张信,黄宇鹏,李洪涛. 神龙-Ⅲ直线感应加速器高稳定度恒流源控制系统. 强激光与粒子束. 2019(04): 89-93 . 本站查看
    4. 李佳戈,苏宗文,任海萍. 医疗器械电磁兼容试验中工作模式的确定. 中国医疗设备. 2019(09): 17-19+23 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.5 %FULLTEXT: 24.5 %META: 73.4 %META: 73.4 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %上海: 1.0 %上海: 1.0 %中山: 0.1 %中山: 0.1 %丽水: 0.2 %丽水: 0.2 %俄罗斯莫斯科: 0.3 %俄罗斯莫斯科: 0.3 %保定: 0.3 %保定: 0.3 %内江: 0.1 %内江: 0.1 %北京: 10.8 %北京: 10.8 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %天津: 0.1 %天津: 0.1 %安康: 0.1 %安康: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 2.8 %张家口: 2.8 %悉尼: 0.7 %悉尼: 0.7 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 1.6 %杭州: 1.6 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 0.7 %漯河: 0.7 %漳州: 0.2 %漳州: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 9.8 %芒廷维尤: 9.8 %芝加哥: 0.1 %芝加哥: 0.1 %莫斯科: 0.7 %莫斯科: 0.7 %衢州: 0.4 %衢州: 0.4 %西宁: 60.0 %西宁: 60.0 %西安: 0.4 %西安: 0.4 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndia上海中山丽水俄罗斯莫斯科保定内江北京十堰南京台州合肥天津安康常州广州张家口悉尼成都扬州普洱杭州桃园武汉深圳温州湖州漯河漳州福州秦皇岛绵阳芒廷维尤芝加哥莫斯科衢州西宁西安运城邯郸郑州长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1094) PDF downloads(51) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return