Chen Zhifei, Yao Ke, Fan Chen, et al. Automated alignment research on off-axis eight-pass laser amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 091004. doi: 10.11884/HPLPB202133.210207
Citation: Chen Zhifei, Yao Ke, Fan Chen, et al. Automated alignment research on off-axis eight-pass laser amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 091004. doi: 10.11884/HPLPB202133.210207

Automated alignment research on off-axis eight-pass laser amplifier

doi: 10.11884/HPLPB202133.210207
More Information
  • Author Bio:

    Chen Zhifei, zfchen950906@163.com

  • Corresponding author: Xie Xudong, Xiexudong@caep.cn
  • Received Date: 2021-05-27
  • Rev Recd Date: 2021-08-20
  • Available Online: 2021-09-10
  • Publish Date: 2021-09-15
  • We present a technical research experimentally demonstrating automated alignment on off-axis eight-pass laser amplifier. The mentioned technique aims to replace manual alignment method with automatic alignment system on the multipass complex laser amplifier, of which the efficiency, accuracy, and output beam quality would improve spectacularly. This technique realizes precise reference mark of pinhole spatial centre position in the spatial filter of the off-axis eight-pass laser amplifier via main laser lighting and image relaying system. The far-field facula is processed by edge detection so that the beam pointing centre is obtained. Based on the difference between the beam centre position and reference, we realizes closed loop automated alignment on the amplifier system via two-dimensionally controlling specific reflector frames. Additionally we indicate that the experimental results of the research fairly satisfied requirements for efficiency and accuracy of the off-axis eight-pass laser amplifier, and verified feasibility of the alignment technique applied in the amplifier as well.
  • [1]
    Mason P, Divoký M, Ertel K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 2017, 4(4): 438-439. doi: 10.1364/OPTICA.4.000438
    [2]
    Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [3]
    Boehly T R, Brown D L, Craxton R S, et al. Initial performance results of the OMEGA laser system[J]. Optics Communications, 1997, 133(1/6): 495-506.
    [4]
    Norman M J, Andrew J E, Bett T H, et al. Multipass reconfiguration of the HELEN Nd: glass laser at the atomic weapons establishment[J]. Applied Optics, 2002, 41(18): 3497-3505. doi: 10.1364/AO.41.003497
    [5]
    Koechner W. Solid-state laser engineering[M]. 4th ed. Berlin: Springer, 1996.
    [6]
    Bowers M, Burkhart S, Cohen S, et al. The injection laser system on the National Ignition Facility[C]//Proceedings of SPIE 6451, Solid State Lasers XVI: Technology and Devices. 2006: 64511M.
    [7]
    Spaeth M L, Manes K P, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [8]
    Wang Chao, Wei Hui, Wang Jiangfeng, et al. 1 J, 1 Hz lamp-pumped high-gain Nd: phosphate glass laser amplifier[J]. Chinese Optics Letters, 2017, 15: 011401. doi: 10.3788/COL201715.011401
    [9]
    Yao Ke, Gao Song, Tang Jun, et al. Off-axis eight-pass neodymium glass laser amplifier with high efficiency and excellent energy stability[J]. Applied Optics, 2018, 57(29): 8727-8732. doi: 10.1364/AO.57.008727
    [10]
    Yao Ke, Xie Xudong, Tang Jun, et al. An efficient off-axis multi-pass Nd: glass amplifier utilizing a birefringence crystal[J]. Laser Physics, 2019, 29: 115002. doi: 10.1088/1555-6611/ab44b7
    [11]
    Zacharias R A, Beer N R, Bliss E S, et al. Alignment and wavefront control systems of the National Ignition Facility[J]. Optical Engineering, 2004, 43(12): 2873-2884. doi: 10.1117/1.1815331
    [12]
    Ye Chengliang, Shang Jianhua, He Yan. Study of laser beam autocollimation system[J]. Laser & Optoelectronics Progress, 2017, 54: 051201.
    [13]
    Wang Shenzhen, Yuan Qiang, Zeng Fa, et al. Beam alignment based on two-dimensional power spectral density of a near-field image[J]. Optics Express, 2017, 25(22): 26591-26599. doi: 10.1364/OE.25.026591
    [14]
    Burkhart S C, Bliss E, Di Nicola P, et al. National Ignition Facility system alignment[J]. Applied Optics, 2011, 50(8): 1136-1157. doi: 10.1364/AO.50.001136
    [15]
    Wen Wenbo, Du Wei. An abstract on the ant colony algorithms[J]. Automation in Petro-chemical Industry, 2002(1): 19-21.
    [16]
    Liu Wen, Bie Hongxia. Colony optimization algorithm on noisy image edge detection[J]. Software, 2013, 34(12): 256-259.
  • Relative Articles

    [1]Zhang Hangyu, Wu Yi, Zhao Shuai, Feng Guoying. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36(7): 079002. doi: 10.11884/HPLPB202436.240030
    [2]Zhu Jungao, Zhao Yuan, Lai Meifu, Gu Yongli, Xu Shixiang, Zhou Cangtao, Lu Haiyang. Study of space charge force for a laser-accelerated proton beam[J]. High Power Laser and Particle Beams, 2023, 35(2): 021004. doi: 10.11884/HPLPB202335.220171
    [3]Wu Zhe, Guan Xianghe, Ji Lailin, Hua Yilin, Gao Yanqi, Sui Zhan, Chen Huacai. Research on multi-pass amplification characteristics of Yb:CNGG active mirror[J]. High Power Laser and Particle Beams, 2023, 35(3): 031003. doi: 10.11884/HPLPB202335.220261
    [4]Liang Qishuai, Chai Changchun, Wu Han, Li Fuxing, Liu Yuqian, Yang Yintang. Damage characteristics and physical mechanism of the CMOS inverter under  fast-rising-edge electromagnetic pulse[J]. High Power Laser and Particle Beams, 2022, 34(8): 083002. doi: 10.11884/HPLPB202234.220019
    [5]Li Cheng, Wang Wenxing, Li Weiwei, Zhang Haoran, Jiang Shimin, Gao Panyun, He Zhigang, Zhang Shancai. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33(9): 094002. doi: 10.11884/HPLPB202133.210091
    [6]Jiang Xinying, Wang Zhenguo, Zheng Jiangang, Yan Xiongwei, Li Min, Zhang Xiongjun, Su Jingqin, Zhu Qihua, Zheng Wanguo. Thermal management of water-cooled 10 Hz Yb:YAG laser amplifier[J]. High Power Laser and Particle Beams, 2020, 32(1): 011010. doi: 10.11884/HPLPB202032.190456
    [7]Wu Yuanjun, Gao Yanqi, Hua Yilin, Xie Qingnan, Zheng Quan, Ma Weixin, Sui Zhan. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32(11): 112006. doi: 10.11884/HPLPB202032.200089
    [8]Sun Liepeng, Yuan Zhenyu, Zhang Cheng, Shi Longbo, Miao Jungang, Zhang Jianhua, Xu Xianbo, He Yuan. Analysis of modules failure in solid-state amplifier for high current RFQ[J]. High Power Laser and Particle Beams, 2019, 31(6): 065103. doi: 10.11884/HPLPB201931.180245
    [9]He Peng, Wei Biao, Feng Peng, Chen Mianyi. K-edge imaging technique based on MARS X-ray spectral CT system[J]. High Power Laser and Particle Beams, 2014, 26(10): 104004. doi: 10.11884/HPLPB201426.104004
    [10]Jiang Xinying, Wang Zhenguo, Zheng Jian’gang, Yan Xiongwei, Li Mingzhong, Tian Xiaolin. Experimental research of gain and thermal aberration properties of cryogenic Yb:YAG laser amplifier[J]. High Power Laser and Particle Beams, 2014, 26(11): 111007. doi: 10.11884/HPLPB201426.111007
    [11]Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983
    [12]zhang libao, ao pengliang. Adaptive filtering algorithm for mixed noise image based on wavelet transform[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [13]zhang libao, li dongling, yu xianchuan, wang pengfei, cai lei. Region-of-interest image edge detection based on histogram[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [14]zhang xiaolin, jing yuefeng, liu jun. Edge detection method based on Facet model for flash X-ray radiographs[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]zhang xiaolin, jing yuefeng, liu jun. An improved edge detection method with Sobel operator in high-energy flash X-ray radiography[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [16]fang liang, lu jia-jia, ye yu-tang, yang xian-ming, cheng zhi-qiang. New method for edge detection of infrared images based on Mumford-Shah model[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [17]xie ya-ping, sun zhi-hong, cheng ze, chen bo, jing feng. Image processing in online inspection of damage in optics[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [18]yi heng-yu, ye yi-dong, lbaida, . Measurement of image segmentation based on optical interference[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [19]yi heng yu, ye yi dong, zhang wei, ji yun song. Detection of targets under complicated background of cloud[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]tang xiu zhang, zhang hai feng, gong kun, ma wei yi, shan yu sheng, wang nai yan. Amplification of UV ultrashort pulse laser in e beam pumped KrF amplifier[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
  • Cited by

    Periodical cited type(2)

    1. 宗楠,唐顺兴,郭亚晶. 基于双焦透镜的双踪远场自动准直. 中国激光. 2024(06): 102-107 .
    2. 蒋志雄,解平,严伟. 激光光束管控中光瞳光轴自动准直技术的应用. 强激光与粒子束. 2023(08): 43-48 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 73.8 %META: 73.8 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.3 %其他: 7.3 %其他: 0.3 %其他: 0.3 %China: 0.9 %China: 0.9 %India: 0.1 %India: 0.1 %Singapore: 0.2 %Singapore: 0.2 %[]: 0.5 %[]: 0.5 %上海: 4.2 %上海: 4.2 %东京: 0.2 %东京: 0.2 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 2.2 %北京: 2.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %宣城: 0.3 %宣城: 0.3 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴拉曼萨: 0.1 %巴拉曼萨: 0.1 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.6 %库比蒂诺: 0.6 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %怀化: 0.1 %怀化: 0.1 %成都: 0.6 %成都: 0.6 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %普赖恩维尔: 0.5 %普赖恩维尔: 0.5 %杭州: 0.9 %杭州: 0.9 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %济南: 0.3 %济南: 0.3 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 26.8 %芒廷维尤: 26.8 %苏州: 0.1 %苏州: 0.1 %菏泽: 0.1 %菏泽: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 43.0 %西宁: 43.0 %西安: 0.1 %西安: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.4 %运城: 1.4 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.3 %郑州: 2.3 %重庆: 0.2 %重庆: 0.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿拉善盟: 0.1 %阿拉善盟: 0.1 %黄冈: 0.3 %黄冈: 0.3 %其他其他ChinaIndiaSingapore[]上海东京东莞东营中山临汾丹东佛山保定六安兰州北京台州哥伦布大连天津宣城密蘇里城巴拉曼萨广州库比蒂诺开封张家口怀化成都无锡晋城普洱普赖恩维尔杭州桂林武汉沈阳沧州济南淄博深圳湖州漯河烟台福州秦皇岛绵阳芒廷维尤苏州菏泽衢州西宁西安诺沃克贵阳运城连云港邯郸郑州重庆长治阳泉阿拉善盟黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (922) PDF downloads(27) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return