Processing math: 100%
He Yang, Chen Fei, Wan Haohua, et al. Fiber-laser-pumped high-power mid-infrared optical parametric oscillator based on MgO: PPLN crystal[J]. High Power Laser and Particle Beams, 2022, 34: 031003. doi: 10.11884/HPLPB202234.210308
Citation: Ji Xiaoling, Deng Yu. Research progress on self-focusing effect of high-power laser beams propagating in inhomogeneous atmosphere[J]. High Power Laser and Particle Beams, 2021, 33: 081002. doi: 10.11884/HPLPB202133.210211

Research progress on self-focusing effect of high-power laser beams propagating in inhomogeneous atmosphere

doi: 10.11884/HPLPB202133.210211
  • Received Date: 2021-05-30
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-08-19
  • Publish Date: 2021-08-15
  • The problem of high-power laser beams propagating through the atmosphere will be encountered in applications, such as the ground-based laser space-debris cleaning, and transportation of the laser radiation produced by solar power from space orbits to the ground. In such applications, the laser power is well above the critical power for self-focusing in air. Therefore, it is important to study the self-focusing effect of high-power laser beams propagating through the inhomogeneous atmosphere. This paper reviews the research progress on self-focusing effect of high-power laser beams propagating upwards or downwards in the inhomogeneous atmosphere. The laser beam propagation model, the theoretical model, and the numerical and analytical methods are introduced. The influence of the self-focusing on the beam propagation characteristics and the beam quality is introduced, and the methods of optimizing the beam quality on the target are summarized. Furthermore, the effects of group-velocity dispersion and atmospheric turbulence on the beam quality are also introduced. Finally, some interesting questions for further research are put forward.

  • [1]
    Klinkrad K. Space debris–models and risk analysis[M]. Chichester: Praxis Publishing, 2006.
    [2]
    Campbell J W. Project Orion: Orbital debris removal using ground-based sensors and lasers[R]. NASA Technical Memorandum 108522, 1996.
    [3]
    Early J T, Bibeau C, Phipps C. Space debris de-orbiting by vaporization impulse using short pulse laser[J]. AIP Conference Proceedings, 2004, 702(1): 190-204.
    [4]
    Rubenchik A M, Barty C P J, Beach R J, et al. Laser systems for orbital debris removal[J]. AIP Conference Proceedings, 2010, 1278(1): 347-353.
    [5]
    Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300. doi: 10.1016/j.asr.2012.02.003
    [6]
    Phipps C R. Laser ablation propulsion and its applications in space[M]//Ossi P M. Advances in the Application of Lasers in Materials Science. Cham: Springer, 2018: 217-246.
    [7]
    Esmiller B, Jacquelard C, Eckel H A, et al. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE[J]. Applied Optics, 2014, 53(31): I45-I54. doi: 10.1364/AO.53.000I45
    [8]
    Lorbeer R A, Zwilich M, Zabic M, et al. Experimental verification of high energy laser-generated impulse for remote laser control of space debris[J]. Scientific Reports, 2018, 8: 8453. doi: 10.1038/s41598-018-26336-1
    [9]
    Phipps C R, Albrecht G, Friedman H, et al. ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
    [10]
    Phipps C R Jr, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. Journal of Applied Physics, 1988, 64(3): 1083-1096. doi: 10.1063/1.341867
    [11]
    张品亮, 龚自正, 杨武霖, 等. 激光移除空间碎片过程的三维仿真与建模[J]. 宇航学报, 2017, 38(3):323-330. (Zhang Pinliang, Gong Zizheng, Yang Wulin, et al. Three-dimensional simulation and modeling on removing orbital debris with lasers[J]. Journal of Astronautics, 2017, 38(3): 323-330 doi: 10.3873/j.issn.1000-1328.2017.03.014
    [12]
    洪延姬, 金星, 王广宇, 等. 激光清除空间碎片方法[M]. 北京: 国防工业出版社, 2013.

    Hong Yanji, Jin Xing, Wang Guangyu, et al. Laser space-debris cleaning method[M]. Beijing: National Defense Industry Press, 2013
    [13]
    温泉, 马赛, 杨丽薇, 等. 湍流作用下地基激光清除空间碎片的影响规律[J]. 激光与红外, 2017, 47(3):277-283. (Wen Quan, Ma Sai, Yang Liwei, et al. Research on influence law of space debris removed by ground-based laser under atmospheric turbulence[J]. Laser & Infrared, 2017, 47(3): 277-283 doi: 10.3969/j.issn.1001-5078.2017.03.004
    [14]
    朱文越, 钱仙妹, 饶瑞中, 等. 高能激光大气传输性能评估技术[J]. 红外与激光工程, 2019, 48:1203002. (Zhu Wenyue, Qian Xianmei, Rao Ruizhong, et al. Evaluation technology of high energy laser atmospheric propagation performance[J]. Infrared and Laser Engineering, 2019, 48: 1203002 doi: 10.3788/IRLA201948.1203002
    [15]
    饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012.

    Rao Ruizhong. Modern atmospheric optics[M]. Beijing: Science Press, 2012
    [16]
    王英俭, 范承玉, 魏合理. 激光在大气和海水中传输及应用[M]. 北京: 国防工业出版社, 2015.

    Wang Yingjian, Fan Chengyu, Wei Heli. Laser beam propagation and applications through the atmosphere and sea water[M]. Beijing: National Defense Industry Press, 2015
    [17]
    Andrews L C, Phillips R L. Laser beam propagation through random media[M]. 2nd ed. Bellingham: SPIE Optical Engineering Press, 2005.
    [18]
    魏平, 李新阳, 罗曦, 等. 部分子孔径缺光对夏克-哈特曼波前传感器波前复原的影响[J]. 中国激光, 2020, 47:0409002. (Wei Ping, Li Xinyang, Luo Xi, et al. Influence of lack of light in partial subapertures on wavefront reconstruction for Shack-Hartmann wavefront sensor[J]. Chinese Journal of Lasers, 2020, 47: 0409002 doi: 10.3788/CJL202047.0409002
    [19]
    Rubenchik A M, Fedoruk M P, Turitsyn S K. The effect of self-focusing on laser space-debris cleaning[J]. Light: Science & Applications, 2014, 3: e159.
    [20]
    Vaseva I A, Fedoruk M P, Rubenchik A M, et al. Light self-focusing in the atmosphere: thin window model[J]. Scientific Reports, 2016, 6: 30697. doi: 10.1038/srep30697
    [21]
    Zhang Yuqiu, Ji Xiaoling, Zhang Hao, et al. Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere[J]. Optics Express, 2018, 26(11): 14617-14625. doi: 10.1364/OE.26.014617
    [22]
    Deng Yu, Ji Xiaoling, Yu Hong, et al. Uniform irradiation generated by beam self-focusing in the inhomogeneous atmosphere[J]. Optics Express, 2019, 27(10): 14585-14593. doi: 10.1364/OE.27.014585
    [23]
    Wang Huan, Ji Xiaoling, Deng Yu, et al. Effect of spatial coherence on laser space-debris removal in the inhomogeneous atmosphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235: 244-249. doi: 10.1016/j.jqsrt.2019.07.009
    [24]
    Fan Xiaoli, Ji Xiaoling, Wang Huan, et al. Self-focusing effect on the beam quality of Hermite-Gaussian beams propagating upwards through the inhomogeneous atmosphere[J]. Journal of the Optical Society of America A, 2021, 38(2): 168-173. doi: 10.1364/JOSAA.412506
    [25]
    Deng Yu, Wang Huan, Ji Xiaoling, et al. Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere[J]. Optics Express, 2020, 28(19): 27927-27939. doi: 10.1364/OE.399401
    [26]
    Rubenchik A M, Fedoruk M P, Turitsyn S K. Laser beam self-focusing in the atmosphere[J]. Physical Review Letters, 2009, 102: 233902. doi: 10.1103/PhysRevLett.102.233902
    [27]
    Miller R I, Roberts T G. Laser self-focusing in the atmosphere[J]. Applied Optics, 1987, 26(21): 4570-4575. doi: 10.1364/AO.26.004570
    [28]
    Talanov V I. Self focusing of wave beams in nonlinear media[J]. ZhETF Pisma Redaktsiiu, 1965, 2: 218.
    [29]
    Kelley P L. Self-focusing of optical beams[J]. Physical Review Letters, 1965, 15(26): 1005-1008. doi: 10.1103/PhysRevLett.15.1005
    [30]
    Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters, 1964, 13(15): 479-482. doi: 10.1103/PhysRevLett.13.479
    [31]
    Deng Hanling, Ji Xiaoling, Li Xiaoqing, et al. Effect of spherical aberration on laser beam self-focusing in the atmosphere[J]. Optics Letters, 2015, 40(16): 3881-3884. doi: 10.1364/OL.40.003881
    [32]
    Deng Hanling, Ji Xiaoling, Li Xiaoqing, et al. Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere[J]. Optics Express, 2016, 24(13): 14429-14437. doi: 10.1364/OE.24.014429
    [33]
    Zhang Yuqiu, Ji Xiaoling, Li Xiaoqing, et al. Self-focusing effect of annular beams propagating in the atmosphere[J]. Optics Express, 2017, 25(18): 21329-21341. doi: 10.1364/OE.25.021329
    [34]
    Chekalin S V, Kandidov V P. From self-focusing light beams to femtosecond laser pulse filamentation[J]. Physics-Uspekhi, 2013, 56(2): 123-140. doi: 10.3367/UFNe.0183.201302b.0133
    [35]
    Rothenberg J E. Pulse splitting during self-focusing in normally dispersive media[J]. Optics Letters, 1992, 17(8): 583-585. doi: 10.1364/OL.17.000583
    [36]
    Stassinakis A N, Nistazakis H E, Peppas K P, et al. Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses[J]. Optics & Laser Technology, 2013, 54: 329-334.
    [37]
    Agrawal G P. Nonlinear fiber optics[M]//Christiansen P L, Sørensen M P, Scott A C. Nonlinear Science at the Dawn of the 21st Century. Berlin: Springer, 2000: 195-211.
    [38]
    Taha T R, Ablowitz M I. Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation[J]. Journal of Computational Physics, 1984, 55(2): 231-253. doi: 10.1016/0021-9991(84)90004-4
    [39]
    Wang Huan, Ji Xiaoling, Zhang Hao, et al. Propagation formulae and characteristics of partially coherent laser beams in nonlinear media[J]. Optics Letters, 2019, 44(4): 743-746. doi: 10.1364/OL.44.000743
    [40]
    Fan Xiaoli, Ji Xiaoling, Yu Hong, et al. Kerr effect on propagation characteristics of Hermite-Gaussian beams[J]. Optics Express, 2019, 27(16): 23112-23123. doi: 10.1364/OE.27.023112
    [41]
    Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/4): 47-189.
    [42]
    Dickey F M. Laser beam shaping: theory and techniques[M]. 2nd ed. Boca Raton: CRC Press, 2014.
    [43]
    Dickey F M, Holswade S C, Shealy D L. Laser beam shaping applications[M]. Boca Raton: CRC Press, 2006.
    [44]
    Shealy D L. Historical perspective of laser beam shaping[C]//Proceedings of SPIE 4770, Laser Beam Shaping III. 2002: 28-47.
    [45]
    Pfalzner S. An introduction to inertial confinement fusion[M]. New York: CRC Press, 2006.
    [46]
    ITU-R. On propagation data and prediction methods required for the design of space-to-earth and earth-to-space optical communication systems[R]. Document 3J/31-E, 2001.
    [47]
    Ribak E N. Laser guide star projection for large telescopes[C]//Proceedings of SPIE, Advances in Adaptive Optics II. 2006: 62724E.
    [48]
    Holzlöhner R, Rochester S M, Calia D B, et al. Optimization of CW sodium laser guide star efficiency[J]. Astronomy & Astrophysics, 2010, 510: A20.
    [49]
    鲁燕华, 黄园芳, 张雷, 等. 钠导星激光器研究进展[J]. 激光与光电子学进展, 2011, 48:071406. (Lu Yanhua, Huang Yuanfang, Zhang Lei, et al. Research progress of sodium guide star lasers[J]. Laser & Optoelectronics Progress, 2011, 48: 071406
  • Relative Articles

    [1]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002. doi: 10.11884/HPLPB202234.220238
    [2]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(11): 112003. doi: 10.11884/HPLPB202234.220226
    [3]Kan Mingxian, Duan Shuchao, Wang Ganghua, Xiao Bo, Zhao Hailong. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32(8): 085002. doi: 10.11884/HPLPB202032.200072
    [4]Wu Yuji, Wang Qiuping, Wang Feng, Li Yulong, Jiang Shaoen. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31(3): 032001. doi: 10.11884/HPLPB201931.190045
    [5]Kan Mingxian, Duan Shuchao, Zhang Zhaohui, Xiao Bo, Wang Ganghua, Wang Guilin, Feng Chunsheng, Peng Jie. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31(6): 065001. doi: 10.11884/HPLPB201931.180300
    [6]Guo Fan, Wang Guilin, Zou Wenkang, Chen Lin, Xie Weiping. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30(12): 125001. doi: 10.11884/HPLPB201830.180239
    [7]Kan Mingxian, Duan Shuchao, Wang Ganghua, Yang Long, Zhang Zhaohui, Wang Guilin. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29(04): 045003. doi: 10.11884/HPLPB201729.160482
    [8]Guo Shuai, Wang Guilin, Zhang Zhaohui, Jia Yuesong, Sun Qizhi, Li Jun, Chi Yuan, Zhang Zhengwei, Zhao Xiaoming, Feng Shuping, Ji Ce, Wei Bing. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Particle Beams, 2016, 28(01): 015015. doi: 10.11884/HPLPB201628.015015
    [9]Ji Ce, Feng Shuping, Xia Minghe, Fu Zhen, Li Yong, Yao Bin, Wang Yujua. PTS experimental study on synchronization[J]. High Power Laser and Particle Beams, 2016, 28(01): 015021. doi: 10.11884/HPLPB201628.015021
    [10]Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138
    [11]Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003
    [12]Tian Qing, Jiang Ping, Xie Xingquan, Zeng Sifeng. PTS control system based on CORBA[J]. High Power Laser and Particle Beams, 2015, 27(04): 045003. doi: 10.11884/HPLPB201527.045003
    [13]Kan Mingxian, Wang Ganghua, Zhang Hongping, Zhao Hailong, Yang Long. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27(01): 015002. doi: 10.11884/HPLPB201527.015002
    [14]Xu Tao, Wei Huiyue, Wang Feng, Peng Xiaoshi. Speckle suppression in imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2014, 26(05): 052001. doi: 10.11884/HPLPB201426.052001
    [15]Wang Guilin, Li Jun, Zhang Zhaohui, Wang Ganghua, Zhou Rongguo, Ouyang Kai, Yang Liang, Wang Xiong, Zhang Zhengwei, Shen Zhaowu. Experiments and velocity validation of magnetically driven flyer plates on “Yang” accelerator[J]. High Power Laser and Particle Beams, 2014, 26(01): 015101. doi: 10.3788/HPLPB201426.015101
    [16]Kan Mingxian, Wang Ganghua, Zhao Hailong, Xie Long. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(08): 2137-2141. doi: 10.3788/HPLPB20132508.2137
    [17]Wang Weining, Wang Feng, Jiang Shao’en, Fu Shaojun. Accuracy examination of shock speed measurement by imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2012, 24(09): 2121-2124. doi: 10.3788/HPLPB20122409.2121
    [18]xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [19]wang feng, peng xiaoshi, liu shenye, jiang xiaohua, ding yongkun. Data processing method of imaging velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- .
    [20]lu jian-xin, wang zhao, liang jing, shan yu-sheng, zhou chuang-zhi, xiang yi-huai, lu ze, tang xiu-zhang. Free-surface velocity measurements using an optically recording velocity interferometer[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
  • Cited by

    Periodical cited type(3)

    1. 赵志刚,赵镇,王德飞,刘虎,陈庆良. 用于DIRCM系统的激光源研究进展. 激光与红外. 2024(11): 1651-1658 .
    2. 黄佳裕,林海枫,闫培光. 高效率宽调谐扇形MgO:PPLN中红外光参量振荡器. 红外与激光工程. 2023(05): 114-119 .
    3. 程乃俊,李惟帆,祁峰. 中红外激光器研究进展. 激光与光电子学进展. 2023(17): 71-88 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 61.4 %META: 61.4 %PDF: 8.0 %PDF: 8.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %其他: 0.3 %其他: 0.3 %Beauharnois: 0.1 %Beauharnois: 0.1 %Kamphaeng Phet: 0.1 %Kamphaeng Phet: 0.1 %North Point: 0.3 %North Point: 0.3 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.4 %United States: 0.4 %[]: 0.1 %[]: 0.1 %上海: 1.7 %上海: 1.7 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.3 %保定: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 0.9 %北京: 0.9 %十堰: 0.3 %十堰: 0.3 %南京: 0.5 %南京: 0.5 %南昌: 0.1 %南昌: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %圣何塞: 0.3 %圣何塞: 0.3 %天津: 0.5 %天津: 0.5 %宁波: 0.3 %宁波: 0.3 %宜春: 0.1 %宜春: 0.1 %宣城: 0.6 %宣城: 0.6 %常州: 0.4 %常州: 0.4 %常德: 0.9 %常德: 0.9 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 2.9 %张家口: 2.9 %成都: 4.5 %成都: 4.5 %扬州: 0.5 %扬州: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.8 %昆明: 0.8 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.4 %济南: 0.4 %淄博: 0.1 %淄博: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %漯河: 2.4 %漯河: 2.4 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 32.2 %芒廷维尤: 32.2 %芝加哥: 0.1 %芝加哥: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 24.6 %西宁: 24.6 %西安: 0.3 %西安: 0.3 %诺沃克: 6.8 %诺沃克: 6.8 %贵阳: 0.5 %贵阳: 0.5 %费利蒙: 0.4 %费利蒙: 0.4 %资阳: 0.4 %资阳: 0.4 %运城: 1.1 %运城: 1.1 %遵义: 0.5 %遵义: 0.5 %郑州: 0.6 %郑州: 0.6 %重庆: 0.5 %重庆: 0.5 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %青岛: 0.4 %青岛: 0.4 %其他其他BeauharnoisKamphaeng PhetNorth PointSeattleUnited States[]上海临汾丹东保定兰州北京十堰南京南昌台州合肥哈尔滨哥伦布嘉兴圣何塞天津宁波宜春宣城常州常德平顶山广州张家口成都扬州无锡昆明晋城普洱朝阳杭州格兰特县武汉沈阳济南淄博深圳温州漯河石家庄秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安诺沃克贵阳费利蒙资阳运城遵义郑州重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article views (1215) PDF downloads(139) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return