Pan Zilong, Yang Jianhua, Cheng Xinbing. Parameter calculation of square pulse output in two-node anti-resonance network[J]. High Power Laser and Particle Beams, 2016, 28: 045008. doi: 10.11884/HPLPB201628.125008
Citation: Qu Guanghui, Wang Yaxin, Zhao Lan, et al. A novel pulse compression diode based on SI-GaAs material[J]. High Power Laser and Particle Beams, 2021, 33: 105002. doi: 10.11884/HPLPB202133.210212

A novel pulse compression diode based on SI-GaAs material

doi: 10.11884/HPLPB202133.210212
  • Received Date: 2021-05-31
  • Rev Recd Date: 2021-07-26
  • Available Online: 2021-10-08
  • Publish Date: 2021-10-15
  • A novel pulse compression diode material was designed and developed based on semi-insulated gallium arsenide (SI-GaAs). A test circuit for its compression performance and repeat trigger performance was built. The results of the experiment show that, the rise time and pulse width of the input pulse can be compressed by approximately 270 times and 14 times, respectively, by using this switch. Besides, electrical pulses were obtained on a 50 Ω resistive load with 1.3 kV magnitude, 1.6 ns rise time, and 40.59 ns width. It was realized to stably work under a repetitive frequency of 1 kHz and the time of operation was 47 minutes, i.e., for a total of approximately two million triggers. To study the operation of the pulse compression diode, its static volt-ampere characteristics were tested. The analysis suggests that the electric field-enhanced capture and dissociation mechanism within the SI-GaAs material results in an enhanced withstand voltage at the beginning of voltage application. Therefore, the diode delayed breakdown during the experiment. The reverse dipole domain effect generates a traction mechanism that triggers a rapidly rising displacement current, which leads to an avalanche breakdown of the reverse bias junction. The diode then exhibits a transient negative resistance characteristic and a high voltage nanosecond electrical pulse is output on the load. The novel pulse compression diode does not require an additional pre-stage device to trigger fast pulses and can maintain a strong avalanche breakdown state by itself for a certain period of time. In summary, it has the advantages of small size and low cost, and it is an ideal switch for developing all-solid-state high repetition frequency nanosecond pulse generator.
  • [1]
    余岳辉, 梁琳. 脉冲功率器件及其应用[M]. 北京: 机械工业出版社, 2010.

    Yu Yuehui, Liang Lin. Pulsed power devices and their applications[M]. Beijing: Machine China Press, 2010
    [2]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005.

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [3]
    曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003.

    Zeng Zhengzhong. Introduction of pulsed power technology[M]. Xi'an: Shaanxi Technology Press, 2003
    [4]
    丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
    [5]
    邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.

    Qiu Aici. Application of pulsed power technology[M]. Xi'an: Shaanxi Technology Press, 2016
    [6]
    郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电工程, 2008, 25(4):1-4. (Zheng Jianyi, He Wen. Review of research actuality and development directions of pulsed power technology[J]. Journal of Mechanical & Electrical Engineering, 2008, 25(4): 1-4 doi: 10.3969/j.issn.1001-4551.2008.04.001
    [7]
    闫克平. 脉冲功率技术及工业应用[C]//第六届全国脉冲功率学术交流会. 2019.

    Yan Keping. Pulsed power technology and industry application[C]//The 6th Pulsed Power Conference. 2019
    [8]
    Bluhm H. Pulsed power system principles and applications[M]. Beijing: Tsinghua University Press, 2008.
    [9]
    韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2006.

    Han Min, Zou Xiaobing, Zhang Guixin. Application of pulsed power technology[M]. Beijing: Tsinghua University Press, 2006
    [10]
    江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(01):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15 doi: 10.3788/HPLPB20122401.0010
    [11]
    张适昌, 严萍, 王珏. 民用脉冲功率源的进展与展望[J]. 高电压技术, 2009, 35(3):618-631. (Zhang Shichang, Yan Ping, Wang Jue. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631
    [12]
    梁勤金, 石小燕, 潘文武. 高压快速离化半导体开关及其脉冲压缩特性[J]. 强激光与粒子束, 2011, 23(8):2141-2144. (Liang Qinjin, Shi Xiaoyan, Pan Wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(8): 2141-2144 doi: 10.3788/HPLPB20112308.2141
    [13]
    梁勤金. 固态高功率高重频脉冲源的研究与发展[J]. 电讯技术, 2019, 59(10):1227-1236. (Liang Qinjin. Research and development of solid state high power high repetition frequency pulse source[J]. Telecommunication Engineering, 2019, 59(10): 1227-1236 doi: 10.3969/j.issn.1001-893x.2019.10.020
    [14]
    吴佳霖, 刘英坤. 高功率半导体开关器件DSRD的研究进展[J]. 微纳电子技术, 2015, 52(4):211-215. (Wu Jialin, Liu Yingkun. Research development of the high power semiconductor switching device DSRD[J]. Micronanoelectronic Technology, 2015, 52(4): 211-215
    [15]
    石小燕, 梁勤金, 郑强林. 1kV/800kHz亚纳秒脉冲发生器设计[J]. 电讯技术, 2016, 56(9):1049-1052. (Shi Xiaoyan, Liang Qinjin, Zheng Qianglin. Design of a 1 kV/800 kHz sub-nanosecond pulse generator[J]. Telecommunication Engineering, 2016, 56(9): 1049-1052 doi: 10.3969/j.issn.1001-893x.2016.09.018
    [16]
    赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002. (Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002
    [17]
    陈洪斌, 孟凡宝, 张运俭, 等. 利用DBD开关开展脉冲压缩技术研究[J]. 高电压技术, 2005(6):44-45,62. (Chen Hongbin, Meng Fanbao, Zhang Yunjian, et al. Research of the pulse compression technology using DBD switch[J]. High Voltage Engineering, 2005(6): 44-45,62 doi: 10.3969/j.issn.1003-6520.2005.06.016
    [18]
    饶俊峰. 基于固态开关的重复频率脉冲功率源的脉冲调制技术及其应用[D]. 上海: 复旦大学, 2013.

    Rao Junfeng. Solid-state switch-based pulse modulation technique for repetitive frequency pulse power sources and its application[D]. Shanghai: Fudan University, 2013
    [19]
    董守龙, 王艺麟, 曾伟荣, 等. 一种全固态多匝直线型变压器驱动源的研制[J]. 电工技术学报, 2020, 35(7):1584-1591. (Dong Shoulong, Wang Yilin, Zeng Weirong, et al. The development of all solid-state multi-turn linear transformer driver[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1584-1591
    [20]
    屈光辉, 鲁霄月, 徐鸣, 等. 利用M-SI-M结构GaAs自击穿产生高压纳秒电脉冲[C]//第六届全国脉冲功率会议. 2019.

    Qu Guanghui, Lu Xiaoyue, Xu Ming, et al. High-voltage nanosecond electrical pulses generated by self-breakdown of GaAs using M-SI-M structures[C]//The 6th National Conference on Pulsed Power. 2019
    [21]
    邹元爔. 化学原理在GaAs缺陷研究中的应用[J]. 稀有金属, 1987, 41(5):321-323. (Zou Yuanxi. Application of chemical principles in the study of GaAs defects[J]. Rare Metals, 1987, 41(5): 321-323
    [22]
    徐波, 王占国, 万寿科, 等. EL2光淬灭过程中光电导增强现象原因新探[J]. 半导体学报, 1994, 15(5):322-328. (Xu Bo, Wang Zhanguo, Wan Shouke, et al. New explanation to EPC phenomenon in EL2 photoquenching[J]. Chinese Journal of Semiconductors, 1994, 15(5): 322-328 doi: 10.3321/j.issn:0253-4177.1994.05.005
    [23]
    邹元爔, 汪光裕, 莫培根. 用物理化学方法鉴别砷化镓中最主要深能级EL2的本性[J]. 物理学进展, 1988, 8(4):54-85. (Zou Yuanxi, Wang Guangyu, Mo Peigen. Identification of the nature of the most dominant deep energy level EL2 in GaAs by physicochemical methods[J]. Progress in Physcis, 1988, 8(4): 54-85
    [24]
    Fang Z Q, Look D C. Excess dark current due to saw damage in semi-insulating GaAs[J]. Journal of Electronic Materials, 1993, 22(11): 1361-1363. doi: 10.1007/BF02817700
    [25]
    Blakemore J S, Dobrilla P. Factors affecting the spatial distribution of the principal midgap donor in semi-insulating gallium arsenide wafers[J]. Journal of Applied Physics, 1985, 58(1): 204-207. doi: 10.1063/1.336280
    [26]
    Zhu Z H, Weber JP, Wang S Y, et al. New measurement technique: cw electrooptic probing of electric fields[J]. Applied Physics Letters, 1986, 49(8): 432-434. doi: 10.1063/1.97636
    [27]
    Zhu Z H, Wang S, Pan C L, et al. New technique to detect the GaAs semi-insulating surface property-cw electro-optic probing[J]. Applied Physics Letters, 1987, 50(17): 1125-1127. doi: 10.1063/1.97937
    [28]
    施卫, 田立强. 半绝缘GaAs光电导开关的击穿特性[J]. 半导体学报, 2004, 25(6):691-696. (Shi Wei, Tian Liqiang. Breakdown characteristics of semi-insulating GaAs photoconductive switch[J]. Journal of Semiconductors, 2004, 25(6): 691-696 doi: 10.3321/j.issn:0253-4177.2004.06.015
    [29]
    Webe E R, Ennen H, Kaufmann U, et al. Identification of AsGa antisites in plastically deformed gallium arsenide[J]. Journal of Applied Physics, 1982, 53(9): 6140-6143. doi: 10.1063/1.331577
    [30]
    Kowalski G, Collins S P, Moore M. Lattice relaxation and metastability of the EL2 defect in semi-insulating GaAs and low temperature GaAs[J]. Journal of Applied Physics, 2000, 87(8): 3663-3668. doi: 10.1063/1.372396
    [31]
    Schöll E, Instabilities in semiconductors including chaotic[J]. Phenomena Physica Scripta, 1989, 29(28): 152-156.
    [32]
    Henry C H, Lang D V. Nonradiative capture and recombination by multiphonon emission in GaAs and GaP[J]. Physical Review B, 1997, 15(2): 989-1016.
    [33]
    Piazza F, Christianen P C M, Maan JC. Real time imaging of propagating high field domains in semi-insulating GaAs[J]. Acta Physica Polonica A, 1995, 88(5): 865-868. doi: 10.12693/APhysPolA.88.865
    [34]
    Piazza F, Christianen P C M, Maan J C. Electric field dependent EL2 capture coefficient in semi-insulating GaAs obtained from propagating high field domains[J]. Applied Physics Letters, 1996, 69(13): 1909-1911. doi: 10.1063/1.117618
    [35]
    Piazza F, Christianen P C M, Maan J C. Propagating high-electric-field domains in semi-insulating GaAs: Experiment and theory[J]. Physical Review. B, 1997, 55(23): 15591-15600. doi: 10.1103/PhysRevB.55.15591
    [36]
    Neumann A. Slow domains in semi-insulating GaAs[J]. Applied Physics Reviews, 2001, 90(1): 1-26. doi: 10.1063/1.1377023
    [37]
    Gatos H C, Kaminska M, Parsey J M. Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2[J]. Applied Physics Letters, 1982, 41(10): 989-991. doi: 10.1063/1.93366
    [38]
    Gunn J B. Microwave oscillations of current in III-V semiconductors[J]. Solid-State Commun, 1963, 1(4): 88-91. doi: 10.1016/0038-1098(63)90041-3
    [39]
    Sze S M. Physics of semiconductor devices [M]. Quantum Electronics IEEE Journal of New York, 1981, 15(12): 1438-1438.
  • Relative Articles

  • Cited by

    Periodical cited type(8)

    1. 郑伟伟,马世榜. 利用激光-电磁超声检测钛钢复合板脱粘. 应用激光. 2022(05): 102-108 .
    2. 郑伟伟,马世榜. 基于横波衍射法应用激光-电磁超声检测内部缺陷. 激光与红外. 2022(11): 1622-1628 .
    3. 宋艳,马世榜. 利用激光超声纵波的衍射信号测量开口裂纹. 激光与红外. 2021(01): 9-14 .
    4. 宋艳,马世榜,张开飞. 热弹激光超声激励及缺陷检测的有限元分析. 激光技术. 2021(02): 246-251 .
    5. 王玉庆,王云霞,马世榜. 基于衍射横波的裂纹激光超声检测方法. 激光技术. 2019(04): 110-114 .
    6. 贾中青,张振振,姬光荣. 离焦量对激光超声测厚信号影响的理论和实验研究. 红外与激光工程. 2017(S1): 13-18 .
    7. 闫政. 激光超声波探测中的智能感应设备的优化设计. 激光杂志. 2016(12): 34-38 .
    8. 马健,赵扬,张振振,高岩,孙继华,巨阳. 斜入射激光支持燃烧波时纵波声场的指向性. 强激光与粒子束. 2016(02): 25-29 . 本站查看

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.3 %FULLTEXT: 19.3 %META: 79.6 %META: 79.6 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %China: 0.6 %China: 0.6 %Colombia: 0.2 %Colombia: 0.2 %India: 0.1 %India: 0.1 %Seattle: 0.2 %Seattle: 0.2 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.4 %上海: 1.4 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 12.1 %北京: 12.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.4 %台州: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.2 %太原: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 0.4 %宣城: 0.4 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.8 %张家口: 0.8 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.5 %扬州: 0.5 %新乡: 0.1 %新乡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.6 %杭州: 1.6 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %英国: 0.1 %英国: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 47.0 %西宁: 47.0 %西安: 1.6 %西安: 1.6 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.6 %运城: 0.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.1 %阳泉: 0.1 %雅加达: 0.2 %雅加达: 0.2 %韩国大邱: 0.1 %韩国大邱: 0.1 %其他ChinaColombiaIndiaSeattleTaiwan, China[]上海中山临汾丹东北京十堰南京南通台州哥伦布天津太原安康宣城常州广州张家口德黑兰成都扬州新乡昆明晋城普洱朝阳杭州武汉沈阳济南深圳漯河石家庄秦皇岛芒廷维尤英国衢州西宁西安贵阳运城邯郸郑州重庆长沙阳泉雅加达韩国大邱

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1068) PDF downloads(58) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return