Citation: | Jing Yanlong, Li Jie, Shi Wentian, et al. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 2021, 33: 109001. doi: 10.11884/HPLPB202133.210223 |
[1] |
Sing S L, An Jia, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3): 369-385. doi: 10.1002/jor.23075
|
[2] |
王晨光, 沈显峰, 王国伟, 等. 金属面曝光选区激光熔化原理装置及试验研究[J]. 强激光与粒子束, 2021, 33:029001. (Wang Chenguang, Shen Xianfeng, Wang Guowei, et al. Principle device and experimental research of surface exposure selective laser melting for metal powder[J]. High Power Laser and Particle Beams, 2021, 33: 029001 doi: 10.11884/HPLPB202133.200221
|
[3] |
龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造工艺参量对熔覆层残余应力的影响[J]. 激光技术, 2019, 43(2):263-268. (Gong Chen, Wang Lifang, Zhu Gangxian, et al. Influence of process parameters on the residual stress of cladding layers by laser additive manufacturing[J]. Laser Technology, 2019, 43(2): 263-268 doi: 10.7510/jgjs.issn.1001-3806.2019.02.021
|
[4] |
杨健, 陈静, 杨海欧, 等. 激光快速成形过程中残余应力分布的实验研究[J]. 稀有金属材料与工程, 2004, 33(12):1304-1307. (Yang Jian, Chen Jing, Yang Haiou, et al. Experimental study on residual stress distribution of laser rapid forming process[J]. Rare Metal Materials and Engineering, 2004, 33(12): 1304-1307 doi: 10.3321/j.issn:1002-185X.2004.12.017
|
[5] |
Yan Xiaoling, Pang Jincheng, Jing Yanlong. Ultrasonic measurement of stress in SLM 316L stainless steel forming parts manufactured using different scanning strategies[J]. Materials, 2019, 12: 2719. doi: 10.3390/ma12172719
|
[6] |
李九霄, 李鸣佩, 杨东野, 等. 选择性激光熔化制造金属构件残余应力的研究进展[J]. 机械工程材料, 2018, 42(8):1-6. (Li Jiuxiao, Li Mingpei, Yang Dongye, et al. Research progress on residual stress in metal component manufactured by selective laser melting[J]. Materials for Mechanical Engineering, 2018, 42(8): 1-6 doi: 10.11973/jxgccl201808001
|
[7] |
杜畅, 张津, 连勇, 等. 激光增材制造残余应力研究现状[J]. 表面技术, 2019, 48(1):200-207. (Du Chang, Zhang Jin, Lian Yong, et al. Research progress on residual stress in laser additive manufacturing[J]. Surface Technology, 2019, 48(1): 200-207
|
[8] |
梁祖磊, 孙中刚, 张少驰, 等. 数值模拟在激光选区熔化中的应用及研究现状[J]. 航空制造技术, 2018, 61(22):87-91,97. (Liang Zulei, Sun Zhonggang, Zhang Shaochi, et al. Application and research status of numerical simulation in laser selective melting[J]. Aeronautical Manufacturing Technology, 2018, 61(22): 87-91,97
|
[9] |
倪立斌, 刘继常, 伍耀庭, 等. 基于神经网络和粒子群算法的激光熔覆工艺优化[J]. 中国激光, 2011, 38:0203003. (Ni Libin, Liu Jichang, Wu Yaoting, et al. Optimization of laser cladding process variables based on neural network and particle swarm optimization algorithms[J]. Chinese Journal of Lasers, 2011, 38: 0203003 doi: 10.3788/CJL201138.0203003
|
[10] |
Akbari M, Saedodin S, Panjehpour A, et al. Numerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloy[J]. Optik, 2016, 127(23): 11161-11172. doi: 10.1016/j.ijleo.2016.09.042
|
[11] |
Li Kun, Yan Shilin, Pan Wenfeng, et al. Warpage optimization of fiber-reinforced composite injection molding by combining back propagation neural network and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4): 963-970.
|
[12] |
雷凯云, 秦训鹏, 刘华明, 等. 基于神经网络的宽带激光熔覆熔池特征参数预测[J]. 光电子·激光, 2018, 29(11):1212-1220. (Lei Kaiyun, Qin Xunpeng, Liu Huaming, et al. Prediction on characteristics of molten pool in wide-band laser cladding based on neural network[J]. Journal of Optoelectronics·Laser, 2018, 29(11): 1212-1220
|
[13] |
姜淑娟, 刘伟军, 南亮亮. 基于神经网络的激光熔覆高度预测[J]. 机械工程学报, 2009, 45(3):269-274,281. (Jiang Shujuan, Liu Weijun, Nan Liangliang. Laser cladding height prediction based on neural network[J]. Journal of Mechanical Engineering, 2009, 45(3): 269-274,281 doi: 10.3901/JME.2009.03.269
|
[14] |
徐浪, 潘勤学, 宿亮, 等. 焊接残余应力超声无损检测技术[J]. 计测技术, 2012, 32(6):29-32,53. (Xu Lang, Pan Qinxue, Su Liang, et al. Compensation technology for nondestructive testing of welded residual stress by ultrasonic[J]. Metrology & Measurement Technology, 2012, 32(6): 29-32,53 doi: 10.3969/j.issn.1674-5795.2012.06.008
|
[15] |
徐春广, 宋文涛, 潘勤学, 等. 残余应力的超声检测方法[J]. 无损检测, 2014, 36(7):25-31. (Xu Chunguang, Song Wentao, Pan Qinxue, et al. Residual stress nondestructive testing method using ultrasonic[J]. Nondestructive Testing, 2014, 36(7): 25-31
|
[16] |
Liu Huaming, Qin Xunpeng, Huang Song, et al. Geometry characteristics prediction of single track cladding deposited by high power diode laser based on genetic algorithm and neural network[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(7): 1061-1070. doi: 10.1007/s12541-018-0126-8
|
[17] |
朱剑英. 智能系统非经典数学方法[M]. 武汉: 华中科技大学出版社, 2001
Zhu Jianying. Non-classical mathematics for intelligent systems[M]. Wuhan: Huazhong University of Science and Technology Press, 2001
|
[18] |
王东生, 杨友文, 田宗军, 等. 基于神经网络和遗传算法的激光多层熔覆厚纳米陶瓷涂层工艺优化[J]. 中国激光, 2013, 40:0903001. (Wang Dongsheng, Yang Youwen, Tian Zongjun, et al. Process optimization of thick nanostructured ceramic coating by laser multi-layer cladding based on neural network and genetic algorithm[J]. Chinese Journal of Lasers, 2013, 40: 0903001 doi: 10.3788/CJL201340.0903001
|
[19] |
徐春广, 李焕新, 王俊峰, 等. 残余应力的超声横纵波检测方法[J]. 声学学报, 2017, 42(2):195-204. (Xu Chunguang, Li Huanxin, Wang Junfeng, et al. Ultrasonic shear and longitudinal wave testing method of residual stress[J]. Acta Acustica, 2017, 42(2): 195-204
|
[20] |
黄本生, 陈权, 杨江, 等. Q345/316L异种钢焊接残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(2):138-144. (Huang Bensheng, Chen Quan, Yang Jiang, et al. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. Transactions of the China Welding Institution, 2019, 40(2): 138-144
|
[21] |
于宝义, 何亮, 郑黎, 等. SLM成形ALSi10Mg合金残余应力数值模拟及组织性能分析[J]. 特种铸造及有色合金, 2020, 40(4):349-355. (Yu Baoyi, He Liang, Zheng Li, et al. Numerical simulation and microstructure analysis of residual stress in SLM formed AlSi10Mg[J]. Special Casting & Nonferrous Alloys, 2020, 40(4): 349-355
|