Zhang Yang, Wang Xianghui, Zhang Jie, et al. Comparison of two discontinuous spectral element methods[J]. High Power Laser and Particle Beams, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169
Citation: Sun Liangwei, Luo Qing. Design and simulation of interferometer for synchrotron radiation beam size measurement[J]. High Power Laser and Particle Beams, 2021, 33: 084002. doi: 10.11884/HPLPB202133.210236

Design and simulation of interferometer for synchrotron radiation beam size measurement

doi: 10.11884/HPLPB202133.210236
  • Received Date: 2021-06-15
  • Rev Recd Date: 2021-08-08
  • Available Online: 2021-08-17
  • Publish Date: 2021-08-15
  • The interferometric measurement of the transverse beam size based on synchrotron radiation is a non-intercepting high precision measurement method. Compared with the imaging method, the interferometric method can measure smaller beam size and get better resolution. It is expected to obtain submicron resolution at shorter measurement wavelength, so it is widely used in synchrotron radiation sources. The upgraded scheme of current interference device in Hefei Light Source HLS-II is presented in this paper. It is proposed to replace the first focusing lens in the original interference light path with an RC structure focusing mirror, and the second single lens with a doublet lens. The design goal of this paper is to reduce dispersion and geometric aberration without changing the optical axis of the optical path, so as to improve the imaging quality of the optical path. The geometrical optical path design is used to evaluate the imaging quality of the optical path, and physical optical simulation is performed to obtain the interference fringes of the measurement system. The simulation results show that the radius of Airy spot is reduced by about 35%, the root mean square radius of dot array is reduced by about 99%, the wavefront difference is reduced by about 75%, and the cutoff frequency of MTF function is increased by about 65%, using a focusing mirror to replace the original focusing lens can greatly improve the image quality of the optical path.
  • [1]
    Chevtsov P, Freyberger A, Hicks R, et al. Synchrotron light interferometer at Jefferson Lab[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 2560-2562.
    [2]
    Fisher A S, Holtzapple R L, Petree M, et al. Beam-size measurements on PEP-II using synchrotron-light interferometry[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 547-549.
    [3]
    Corbett J, Cheng W, Fisher A S, et al. Interferometer beam size measurements in SPEAR3[C]//Proceedings of PAC09. 2009: 4018-4020.
    [4]
    Koopmans M, Goslawski P, Hwang J G, et al. Status of a double slit interferometer for transverse beam size measurements at BESSY II[C]//Proceedings of IPAC2017. 2017: 149-152.
    [5]
    Masaki M, Takano S. Beam size measurement of the Spring-8 storage ring by two-dimensional interferometer[C]//Proceedings DIPAC 2001. 2001: 142-144.
    [6]
    王理, 赵敬霞, 曹建社, 等. 同步光干涉方法对BEPCII储存环束流的测量[J]. 强激光与粒子束, 2011, 23(9):2512-2514. (Wang Li, Zhao Jingxia, Cao Jianshe, et al. Beam size measurement of BEPC II storage ring by using visible synchrotron light interferometry[J]. High Power Laser and Particle Beams, 2011, 23(9): 2512-2514 doi: 10.3788/HPLPB20112309.2512
    [7]
    高波. 上海光源诊断线站升级中的若干关键技术研究[D]. 上海: 中国科学院上海应用物理研究所, 2018: 73-91.

    Gao Bo. Study on several key techniques in upgrading of the diagnostic beam line at Shanghai Synchrotron Radition Facility[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018: 73-91
    [8]
    唐凯. HLSII基于光学的测量系统及其相关研究[D]. 合肥: 中国科学技术大学, 2016: 83-94.

    Tang Kai. The related research of the measurement system based on optics of HLS Ⅱ[D]. Hefei: University of Science and Technology of China, 2016: 83-94
    [9]
    唐雷雷. HLS Ⅱ束流横向截面测量系统的研制及相关研究[D]. 合肥: 中国科学技术大学, 2013: 55-76.

    Tang Leilei. Development and study of beam profile measurement system for HLS Ⅱ[D]. Hefei: University of Science and Technology of China, 2013: 55-76
    [10]
    陈杰. 干涉仪测量电子储存环束流截面的研究[D]. 上海: 中国科学院上海应用物理研究所, 2012: 36-56.

    Chen Jie. The research of measuring beam size of electron storage ring with interferometer[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2012: 36-56
    [11]
    Naito T, Mitsuhashi T. Very small beam-size measurement by a reflective synchrotron radiation interferometer[J]. Physical Review Accelerators and Beams, 2006, 9: 122802. doi: 10.1103/PhysRevSTAB.9.122802
    [12]
    Li C L, Xu Y H, Boland M J, et al. Double-slit interferometer measurements at SPEAR3[C]//Proceedings of IPAC2016. 2016.
    [13]
    孙葆根. 加速器中的束流诊断技术讲义, 第五章: 束流横向尺寸发射度测量[M]. 合肥: 中国科学技术大学, 2008.

    Sun Baogen. Beam diagnostics in accelerators—Chapter 5: measurement of beam transverse size emittance[M]. Hefei: University of Science and Technology of China, 2008
    [14]
    Mitsuhashi T. Spatial coherency of the synchrotron radiation at the visible light region and its application for the electron beam profile measurement[C]//Proceedings of the 1997 Particle Accelerator Conference. 1997: 766-768.
    [15]
    Mitsuhashi T. Beam profile and size measurement by SR interferometers[C]//Proceedings of the Joint US-CERN-Russia-Japan School on Particle Accelerators. 1999: 399-427.
    [16]
    Garg A D, Modi M H, Puntambekar T A. Design of synchrotron radiation interferometer (SRI) for beam size measurement at visible diagnostics beamline in Indus-2 SRS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 902: 164-172.
    [17]
    Koopmans M, Goslawski P, Hwang J G, et al. Applications of the interferometric beam size monitor at BESSY II[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 2103-2106.
    [18]
    Butti D. Synchrotron radiation interferometry for beam size measurement in the Large Hadron Collider[D]. Milan: Polytechnic University of Milan, 2019: 29-44.
    [19]
    费业泰. 误差理论与数据处理[M]. 7版. 北京: 机械工业出版社, 2015: 83-89.

    Fei Yetai. Error theory and data processing[M]. 7th ed. Beijing: China Machine Press, 2015: 83-89
  • Relative Articles

    [1]Zhou Wenchao, Wei Qianhe, Peng Chen, Huang Dequan, Zhu Rihong. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36(1): 011002. doi: 10.11884/HPLPB202436.240014
    [2]Li Hao, Bai Yang, Yan Lianghong, Yan Hongwei, Li Heyang, Yang Ke, Liu Taixiang, Wang Tao, Yuan Xiaodong. Stability of sol-gel silica coatings under ISO Class 5 atmosphere condition[J]. High Power Laser and Particle Beams, 2018, 30(5): 052001. doi: 10.11884/HPLPB201830.170383
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Yi Qiang, Huang Qiushi, Wang Xiangmei, Yang Yang, Zhang Zhong, Wang Zhanshan, Xu Rongkun, Peng Taiping, Zhou Hongjun, Huo Tonglin. Narrow-band Si/Mo/C multilayer mirrors working at 13 nm[J]. High Power Laser and Particle Beams, 2016, 28(12): 122002. doi: 10.11884/HPLPB201628.160440
    [5]Chen Bin, Zhang Zehai, Zheng Guozhi, Yi Junli. Numerical simulation of electromagnetic wave reflectivity and transmissivity of concrete with steel wires[J]. High Power Laser and Particle Beams, 2016, 28(08): 083201. doi: 10.11884/HPLPB201628.150410
    [6]Yi Hengyu, Peng Yong, Huang Zuxin, Chen Xingwu. Super-high reflectivity measurement of arbitrary spheric optical element[J]. High Power Laser and Particle Beams, 2013, 25(02): 287-291. doi: 10.3788/HPLPB20132502.0287
    [7]Jin Yunsheng, Tan Fuli, He Jia, Li Mu, Zhang Yongqiang, Zhang Hongping, Zhao Jianheng. Numerical inverse computation of reflectivity[J]. High Power Laser and Particle Beams, 2013, 25(03): 549-552. doi: 10.3788/HPLPB20132503.0549
    [8]Jin Yunsheng, Tan Fuli, Li Mu, Zhang Yongqiang, Zhao Jianheng. Reflectivity of 30CrMnSiA steel under continuous-wave laser repeated irradiation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2827-2830. doi: 10.3788/HPLPB20122412.2827
    [9]Guo ZhiyinG, Yi RonGqinG, Du HuabinG, He Xiaoan, ZhenG Lei, Zhao YidonG. Investigation on reflectance of soft X-ray mirror used in ICF experiments[J]. High Power Laser and Particle Beams, 2012, 24(09): 2113-2116. doi: 10.3788/HPLPB20122409.2113
    [10]jin yunsheng, tan fuli, zhang yongqiang, li mu, zhao jianheng. Effects and elimination method of thermal radiation interference on reflectivity measurement[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [11]chen mingrui, bi siwen, dou xibo. Transmission characteristics of two-cavity Fabry-Perot structure[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [12]zhang hui-jing, zhang zhong, zhu jing-tao, bai liang, chen rui, huang qiu-shi, liu li-qin, tan mo-yan, wang feng-li, wang zhan-shan, chen ling-yan. Design and fabrication of high reflectivity Mo/B4C multilayer mirrors[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [13]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye, zhu jing-tao, zhao yi-dong, cui ming-qi. Reflectivity calibration of soft X-ray multilayer mirror in Beijing Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [14]yang chun-lin, xu qiao, zhou li-shu, yang li-ming. Characteristcs of the tansmission grating under the Brewster angle[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [15]gao li-feng, xiong sheng-ming, li bin-cheng, zhang yun-dong, cai bang-wei, . Analysis of reflectivity measurement by cavity ring-down spectroscopy[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [16]yi heng-yu, peng yong, hu xiao-yang, wang yao-mei, wang wen-dong, zhou wen-chao, zheng wei-min, huang zu-xin, liao yuan. Precise measurement system for reflectivity scanning of large aperture components[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [17]wang wei, ni yuan-long, wan bing-gen, sun jin-ren, wu jiang, wang chen, sun yu-qin, zhou guan-lin, gu yuan, wang shi-ji. Single-shot measurement of soft X-ray Mo/Si multi-layer mirror reflectance[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.0 %FULLTEXT: 25.0 %META: 73.6 %META: 73.6 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.1 %其他: 0.1 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Wageningen: 0.4 %Wageningen: 0.4 %[]: 0.5 %[]: 0.5 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 18.5 %北京: 18.5 %南京: 0.1 %南京: 0.1 %台州: 1.1 %台州: 1.1 %合肥: 0.1 %合肥: 0.1 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.4 %成都: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.4 %杭州: 2.4 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.1 %石家庄: 0.1 %科英布拉: 0.4 %科英布拉: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.6 %纽约: 0.6 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %衢州: 0.4 %衢州: 0.4 %西宁: 51.3 %西宁: 51.3 %西安: 0.5 %西安: 0.5 %运城: 0.4 %运城: 0.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他其他ChinaIndiaWageningen[]上海中山临汾丹东兰州北京南京台州合肥宁波宜昌宣城广州张家口成都晋城普洱杭州桃园武汉沈阳深圳漯河石家庄科英布拉秦皇岛纽约芒廷维尤衢州西宁西安运城重庆金华长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views (1509) PDF downloads(75) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return