Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, et al. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244
Citation: Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, et al. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244

Novel electron source based on interaction between high power laser and metal wire

doi: 10.11884/HPLPB202133.210244
Funds:  National Natural Science Foundation of China (U1832185)
More Information
  • Author Bio:

    Yin Jiapeng, yinjiapeng@sjtu.edu.cn

  • Corresponding author: Liu Shengguang, liushg@sjtu.edu.cn
  • Received Date: 2021-06-18
  • Rev Recd Date: 2021-07-26
  • Available Online: 2021-09-04
  • Publish Date: 2021-09-15
  • Electron source generates electron bunch and dominates the electron beam quality for an accelerator. We put forward a novel mechanism of electron source in this paper. A great amount of hot electrons with several hundred keV can be generated during the interaction process between high power laser and metal wire, and some of them fly forward along the wire, guided by EM field. We generate electron beam and measure beam parameters downstream the Au wire, W wire and Cu wire experimentally. 3 nC electrons can be collected by a Faraday-cup for a single shot. Electron energy spectrum is between 0−240 keV continually, and there is a density peak at 100 keV. RF buncher cavity can be used to compress the bunch length short enough for further RF acceleration in main accelerator. Start-to-end simulation has been done with ASTRA code. Electron beam with 55 ps length and 1 nC charge is injected into a 2-cell RF buncher cavity, it can be compressed into 27 ps long, which satisfies the general requirement of the main accelerator on the electron source.
  • loading
  • [1]
    Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101.
    [2]
    Tokita S, Otani K, Nishoji T, et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2011, 106: 255001. doi: 10.1103/PhysRevLett.106.255001
    [3]
    Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
    [4]
    Kania B, Sikora J. System identification of a hot cathode electron source: time domain approach[J]. AIP Advances, 2018, 8: 105107. doi: 10.1063/1.5044258
    [5]
    Qi Fengfeng, Ma Zhuoran, Zhao Lingrong, et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 2020, 124: 134803. doi: 10.1103/PhysRevLett.124.134803
    [6]
    Wu Dai, Bai Wei, Li Ming, et al. Prototype experiment preparation of a 54.167MHz laser wire system for FEL-THz facility at CAEP[C]//Proceedings of 4th International Particle Accelerator Conference. 2013.
    [7]
    Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [8]
    Hegelich B M, Jung D, Albright B J, et al. Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition[J]. Nuclear Fusion, 2011, 51: 083011. doi: 10.1088/0029-5515/51/8/083011
    [9]
    Fujioka S, Arikawa1 Y, Kojima S, et al. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field[J]. Physics of Plasmas, 2016, 23: 056308. doi: 10.1063/1.4948278
    [10]
    Tian Ye, Liu Jiansheng, Bai Yafeng, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 2017, 11(4): 242-246. doi: 10.1038/nphoton.2017.16
    [11]
    Yu Tongpu, Ma Yanyun, Chang Wenwei, et al. Numerical simulation on effect of laser parameters on terahertz radiation[J]. High Power Laser and Particle Beams, 2008, 20(6): 943-947.
    [12]
    Zhuo H B, Zhang S J, Li X H, et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 2017, 95: 013201. doi: 10.1103/PhysRevE.95.013201
    [13]
    Chen Min, Shenga Z M, Zheng Jun, et al. Surface electron acceleration in relativistic laser-solid interactions[J]. Optics Express, 2006, 14(7): 3093-3098. doi: 10.1364/OE.14.003093
    [14]
    Zhidkov A, Koga J, Hosokai T, et al. Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration[J]. Physics of Plasmas, 2004, 11(12): 5379-5386. doi: 10.1063/1.1807849
    [15]
    Karmakar M, Chakrabarti N, Sengupta S. Plasma wakefield excitation in a cold magnetized plasma for particle acceleration[J]. Physics of Plasmas, 2017, 24: 052111. doi: 10.1063/1.4982808
    [16]
    Tanaka K A, Yabuuchi T, Sato T, et al. Calibration of imaging plate for high energy electron spectrometer[J]. Review of Scientific Instruments, 2005, 76: 013507. doi: 10.1063/1.1824371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (836) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return