Citation: | Yin Jiapeng, Yuan Xiaohui, Zhou Zusheng, et al. Novel electron source based on interaction between high power laser and metal wire[J]. High Power Laser and Particle Beams, 2021, 33: 094003. doi: 10.11884/HPLPB202133.210244 |
[1] |
Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101.
|
[2] |
Tokita S, Otani K, Nishoji T, et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2011, 106: 255001. doi: 10.1103/PhysRevLett.106.255001
|
[3] |
Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
|
[4] |
Kania B, Sikora J. System identification of a hot cathode electron source: time domain approach[J]. AIP Advances, 2018, 8: 105107. doi: 10.1063/1.5044258
|
[5] |
Qi Fengfeng, Ma Zhuoran, Zhao Lingrong, et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 2020, 124: 134803. doi: 10.1103/PhysRevLett.124.134803
|
[6] |
Wu Dai, Bai Wei, Li Ming, et al. Prototype experiment preparation of a 54.167MHz laser wire system for FEL-THz facility at CAEP[C]//Proceedings of 4th International Particle Accelerator Conference. 2013.
|
[7] |
Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
|
[8] |
Hegelich B M, Jung D, Albright B J, et al. Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition[J]. Nuclear Fusion, 2011, 51: 083011. doi: 10.1088/0029-5515/51/8/083011
|
[9] |
Fujioka S, Arikawa1 Y, Kojima S, et al. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field[J]. Physics of Plasmas, 2016, 23: 056308. doi: 10.1063/1.4948278
|
[10] |
Tian Ye, Liu Jiansheng, Bai Yafeng, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 2017, 11(4): 242-246. doi: 10.1038/nphoton.2017.16
|
[11] |
Yu Tongpu, Ma Yanyun, Chang Wenwei, et al. Numerical simulation on effect of laser parameters on terahertz radiation[J]. High Power Laser and Particle Beams, 2008, 20(6): 943-947.
|
[12] |
Zhuo H B, Zhang S J, Li X H, et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 2017, 95: 013201. doi: 10.1103/PhysRevE.95.013201
|
[13] |
Chen Min, Shenga Z M, Zheng Jun, et al. Surface electron acceleration in relativistic laser-solid interactions[J]. Optics Express, 2006, 14(7): 3093-3098. doi: 10.1364/OE.14.003093
|
[14] |
Zhidkov A, Koga J, Hosokai T, et al. Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration[J]. Physics of Plasmas, 2004, 11(12): 5379-5386. doi: 10.1063/1.1807849
|
[15] |
Karmakar M, Chakrabarti N, Sengupta S. Plasma wakefield excitation in a cold magnetized plasma for particle acceleration[J]. Physics of Plasmas, 2017, 24: 052111. doi: 10.1063/1.4982808
|
[16] |
Tanaka K A, Yabuuchi T, Sato T, et al. Calibration of imaging plate for high energy electron spectrometer[J]. Review of Scientific Instruments, 2005, 76: 013507. doi: 10.1063/1.1824371
|