Citation: | Yang Xuemei, Tian Kan, He Linzhen, et al. Progress on intra-pulse difference frequency generation in femtosecond laser[J]. High Power Laser and Particle Beams, 2021, 33: 111004. doi: 10.11884/HPLPB202133.210246 |
Mid-infrared (MIR) lasers have various advantages and can be widely used in either fundamental research fields or practical applications such as strong-field physics, molecular sensing and minimally-invasive tissue ablation. Generally, there are two categories of methods to generate MIR laser emission: one is direct lasing and the other is nonlinear frequency down-conversion. However, for the ultra-broadband few-cycle MIR generation, nonlinear down-conversion is the only available method. Intra-pulse Difference Frequency Generation (IP-DFG) is a simple method of nonlinear frequency conversion. In this article, the IP-DFG technology for the ultra-broadband MIR few-cycle pulses generation is reviewed. Different MIR nonlinear crystals, various driving laser sources, the spectral coverage of the MIR-IPDF output, and the conversion efficiency are compared and discussed. Last but not least, the prospects and challenges of MIR IP-DFG are presented.
[1] |
尹文龙, 康彬, 邓建国. 新型硫族化合物在中红外非线性光学晶体方面研究进展[J]. 强激光与粒子束, 2014, 26:071009. (Yin Wenlong, Kang Bin, Deng Jianguo. Research progress of new chalcogenides in mid-infrared nonlinear optical crystals[J]. High Power Laser and Particle Beams, 2014, 26: 071009 doi: 10.11884/HPLPB201426.071009
|
[2] |
Li Lingqi, Nie Weijie, Li Ziqi, et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications[J]. Scientific Reports, 2017, 7: 7034. doi: 10.1038/s41598-017-07587-w
|
[3] |
Manceau J M, Loukakos P A, Tzortzakis S. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses[J]. Applied Physics Letters, 2010, 97: 251904. doi: 10.1063/1.3529466
|
[4] |
Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
|
[5] |
鲁燕华, 王卫民, 彭跃峰, 等. 磷锗锌光学参量振荡器技术研究[J]. 强激光与粒子束, 2006, 18(8):1261-1264. (Lu Yanhua, Wang Weimin, Peng Yuefeng, et al. Zinc germanium phosphide optical parametric oscillator[J]. High Power Laser and Particle Beams, 2006, 18(8): 1261-1264
|
[6] |
Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141. doi: 10.1038/nphys1847
|
[7] |
Blaga C I, Xu Junliang, Dichiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197. doi: 10.1038/nature10820
|
[8] |
Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
|
[9] |
Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213
|
[10] |
Pupeza I, Sánchez D, Zhang Jinwei, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179
|
[11] |
Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 2004, 29(13): 1542-1544. doi: 10.1364/OL.29.001542
|
[12] |
Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 2018, 5(6): 727-732. doi: 10.1364/OPTICA.5.000727
|
[13] |
Zhang Jinwei, Mak K F, Nagl N, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1[J]. Light: Science & Applications, 2018, 7: 17180.
|
[14] |
Yumoto M, Saito N, Lin Taichen, et al. High-energy, nanosecond pulsed Cr: CdSe laser with a 2.25-3.08 μm tuning range for laser biomaterial processing[J]. Biomedical Optics Express, 2018, 9(11): 5645-5653. doi: 10.1364/BOE.9.005645
|
[15] |
Gaida C, Gebhardt M, Heuermann T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 2018, 7: 94.
|
[16] |
Zhang Jinwei, Fritsch K, Wang Qing, et al. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching[J]. Optics Letters, 2019, 44(12): 2986-2989. doi: 10.1364/OL.44.002986
|
[17] |
Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338. doi: 10.1364/OL.43.001335
|
[18] |
Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses[J]. Optica, 2019, 6(1): 111-114. doi: 10.1364/OPTICA.6.000111
|
[19] |
Wang Qing, Zhang Jinwei, Kessel A, et al. Broadband mid-infrared coverage (2–17 μm) with few-cycle pulses via cascaded parametric processes[J]. Optics Letters, 2019, 44(10): 2566-2569. doi: 10.1364/OL.44.002566
|
[20] |
Liu Kun, Liang Houkun, Qu Shizhen, et al. High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm[J]. Optics Express, 2019, 27(26): 37706-37713. doi: 10.1364/OE.27.037706
|
[21] |
Elu U, Maidment L, Vamos L, et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source[J]. Nature Photonics, 2021, 15(4): 277-280. doi: 10.1038/s41566-020-00735-1
|
[22] |
Lesko D M B, Timmers H, Xing Sida, et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser[J]. Nature Photonics, 2021, 15(4): 281-286. doi: 10.1038/s41566-021-00778-y
|