Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Chen Ran, Yang Jiancan, WeiYinhe. Effect of Zr doping material on the structure and performance of tungsten electrode[J]. High Power Laser and Particle Beams, 2021, 33: 104004. doi: 10.11884/HPLPB202133.210263
Citation: Chen Ran, Yang Jiancan, WeiYinhe. Effect of Zr doping material on the structure and performance of tungsten electrode[J]. High Power Laser and Particle Beams, 2021, 33: 104004. doi: 10.11884/HPLPB202133.210263

Effect of Zr doping material on the structure and performance of tungsten electrode

doi: 10.11884/HPLPB202133.210263
  • Received Date: 2021-07-09
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-10-26
  • Publish Date: 2021-10-15
  • The W-1.5%La2O3-0.1%Y2O3-0.1%ZrO2 and W-1.5%La2O3-0.1%Y2O3-0.08%ZrH2 electron emission materials were prepared by the intermediate frequency induction heating sintering method. The density of the sintered sample is about 95.5%. The thermionic emission test results show that the zero field emission current density of the thermionic emission material sample added with zirconium hydride is greater than that of the sample added with zirconia. The analysis illustrates that the added zirconium hydride decomposes during sintering, and the active Zr can capture tungsten. The impurity oxygen in the grain boundary purifies the grain boundary, thereby improving electron emission; Vickers microhardness measurement shows that the hardness of the sample with zirconium hydride added is higher than that of the sample with zirconium oxide. Analysis shows that the addition of zirconium hydride effectively improves the bonding between the tungsten crystal grains and enhances the hardness of the tungsten electron-emitting material. The samples were characterized by SEM, EDS, XRD, metallographic microscope and other surface analysis equipment. The structure shows that the addition of zirconium hydride, compared with the addition of zirconia, not only decreases the size of tungsten grains from 13.63 μm to 11.63 μm, but also decreases the size of the rare earth phase from 1.87 μm to 1.66 μm. This change in organizational structure is conducive to electron emission.
  • loading
  • [1]
    郭艳群, 聂祚仁, 席晓丽, 等. 钨热电子发射材料的研究进展[J]. 稀有金属, 2005, 29(2):200-205. (Guo Yanqun, Nie Zuoren, Xi Xiaoli, et al. Advances in research on tungsten cathode materials[J]. Chinese Journal of Rare Metals, 2005, 29(2): 200-205 doi: 10.3969/j.issn.0258-7076.2005.02.016
    [2]
    杨建参, 聂祚仁, 周美玲, 等. 稀土钨电极材料的研究[J]. 中国钨业, 2007, 22(1):39-41. (Yang Jiancan, Nie Zuoren, Zhou Meiling, et al. On tungsten electrode doped with rare earth oxides[J]. China Tungsten Industry, 2007, 22(1): 39-41 doi: 10.3969/j.issn.1009-0622.2007.01.011
    [3]
    杨宇锋, 唐元春. 稀土钨电极在高强度气体放电灯中的应用研究[J]. 中国钨业, 2005, 20(5):22-25. (Yang Yufeng, Tang Yuanchun. Study on application of W-REO electrodes in high-intensity gas discharge lamps[J]. China Tungsten Industry, 2005, 20(5): 22-25 doi: 10.3969/j.issn.1009-0622.2005.05.007
    [4]
    李明辉. 我国钨电极行业现状及未来发展趋势[J]. 世界有色金属, 2019(15):140-141. (Li Minghui. The status quo and future development trend of my country's tungsten electrode industry[J]. World Nonferrous Metals, 2019(15): 140-141 doi: 10.3969/j.issn.1002-5065.2019.15.084
    [5]
    周美玲, 聂祚仁, 陈颖, 等. 稀土钨电极研究与应用[J]. 中国钨业, 2000, 15(1):30-34. (Zhou Meiling, Nie Zuoren, Chen Ying, et al. Research and development of RE-tungsten electrodes[J]. China Tungsten Industry, 2000, 15(1): 30-34 doi: 10.3969/j.issn.1009-0622.2000.01.010
    [6]
    朱文光, 杨建参, 西宇辰, 等. TIG焊用几种钨电极的焊接性能研究[J]. 稀有金属, 2014, 38(5):793-799. (Zhu Wenguang, Yang Jiancan, Xi Yuchen, et al. Welding performance of several TIG tungsten electrodes[J]. Chinese Journal of Rare Metals, 2014, 38(5): 793-799
    [7]
    王芦燕, 于月光, 彭鹰, 等. 不同工况下钨电极抗烧损性能研究[J]. 有色金属工程, 2019, 9(10):21-28. (Wang Luyan, Yu Yueguang, Peng Ying, et al. Study on anti-burning performance of tungsten electrode under different working conditions[J]. Nonferrous Metals Engineering, 2019, 9(10): 21-28 doi: 10.3969/j.issn.2095-1744.2019.10.004
    [8]
    Xie Z M, Liu R, Zhang T, et al. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure[J]. Materials & Design, 2016, 107: 144-152.
    [9]
    Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten[J]. Journal of Nuclear Materials, 2014, 444(1/3): 175-180.
    [10]
    张莹超. 稀土钨电极工作表面及电子发射机理研究[D]. 北京: 北京工业大学, 2020

    Zhang Yingchao. Study on the working surface of rare earth tungsten electrode and electron emission mechanism[D]. Beijing: Beijing University of Technology, 2020
    [11]
    郭艳群. 稀土氧化物-钨热电子发射材料性能与机理研究[D]. 北京: 北京工业大学, 2004

    Guo Yanqun. Study on thermionic emission property and mechanism of tungsten cathode material doped with rare-earth oxides[D]. Beijing: Beijing University of Technology, 2004
    [12]
    王新刚, 宋华, 王茂林, 等. 第二相粒子大小对Mo-La2O3阴极电子发射性能的影响[J]. 稀有金属材料与工程, 2010, 39(11):1928-1932. (Wang Xingang, Song Hua, Wang Maolin, et al. Effects of second phase particle size on electron emission ability of Mo-La2O3 cathode[J]. Rare Metal Materials and Engineering, 2010, 39(11): 1928-1932
    [13]
    花思明. 浅谈晶粒度测量不确定度评定方法[J]. 质量技术监督研究, 2015(2):9-11,15. (Hua Siming. Discussion on the evaluation method of measurement uncertainty of grain size[J]. Quality and Technical Supervision Research, 2015(2): 9-11,15 doi: 10.3969/j.issn.1674-5981.2015.02.003
    [14]
    吕秀乾, 石正岩, 翟海萌. 直线截点法测定金属平均晶粒度的不确定度评定[J]. 理化检验-物理分册, 2018, 54(4):265-268. (Lü Xiuqian, Shi Zhengyan, Zhai Haimeng. Uncertainty evaluation on average grain size of metals measured by straight-line cutting point method[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2018, 54(4): 265-268
    [15]
    刘松. 截点法测量金属平均晶粒度的不确定度评定及分析[J]. 失效分析与预防, 2020, 15(1):6-11. (Liu Song. Evaluation and analysis on uncertainty of measuring metal average grain size by intersection point method[J]. Failure Analysis and Prevention, 2020, 15(1): 6-11 doi: 10.3969/j.issn.1673-6214.2020.01.002
    [16]
    王力, 邝用庚, 张保红, 等. 钨热阴极材料的研究进展[J]. 粉末冶金工业, 2014, 24(4):55-61. (Wang Li, Kuang Yonggeng, Zhang Baohong, et al. Research progress on tungsten hot cathode materials[J]. Powder Metallurgy Industry, 2014, 24(4): 55-61 doi: 10.3969/j.issn.1006-6543.2014.04.010
    [17]
    席晓丽, 聂祚仁, 杨建参, 等. 掺杂方式对钨电子发射材料性能和结构的影响[J]. 稀有金属, 2004, 28(2):293-296. (Xi Xiaoli, Nie Zuoren, Yang Jiancan, et al. Effect of doping methods on characterization and structure of tungsten electronic emission material[J]. Chinese Journal of Rare Metals, 2004, 28(2): 293-296 doi: 10.3969/j.issn.0258-7076.2004.02.001
    [18]
    王金淑, 田恬, 刘伟, 等. 铼掺杂对含钪阴极性能与微观结构的影响[J]. 北京工业大学学报, 2015, 41(4):481-485. (Wang Jinshu, Tian Tian, Liu Wei, et al. Emission property and microstructure of Re doped cathode[J]. Journal of Beijing University of Technology, 2015, 41(4): 481-485
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (711) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return