Citation: | Lai Weihao, Ding Haibing, Lu Dengfeng, et al. Study of multi-gap resonant cavity for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2021, 33: 103008. doi: 10.11884/HPLPB202133.210294 |
[1] |
Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Transactions on Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
|
[2] |
丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008
Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008
|
[3] |
Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
|
[4] |
Roitman A, Viant M, Nilsen C, et al. On-orbit performance of the CloudSat EIK and future space missions[C]//2007 IEEE International Vacuum Electronics Conference. 2007: 1-2.
|
[5] |
Feng Haiping, Sun Fujiang, Li Dongfeng. Development of Ka-band extended-interaction klystron[C]//2019 International Vacuum Electronics Conference (IVEC). 2019: 1-2.
|
[6] |
Wei Ying, Li Dongfeng, Zhou Jun, et al. A high power W-band extended interaction klystron[C]//2019 International Vacuum Electronics Conference (IVEC). 2019: 1-2.
|
[7] |
Ding Haibing, Li Weisong, Lu Dengfeng, et al. Development progress of high power continuous wave klystrons[C]//2020 Cross Strait Radio Science and Wireless Technology Conference. Fuzhou, China: IEEE, 2020: 1-2.
|
[8] |
王柳亚, 丁海兵. Ka波段分布作用速调管降压收集极设计[J]. 强激光与粒子束, 2020, 32:083001. (Wang Liuya, Ding Haibing. Design of depressed collector for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 083001
|
[9] |
Ding Haibing, Ding Yaogen, Sun Xiaoxin, et al. Design of X-band 80kW CW broadband klystron[C]//2015 IEEE International Vacuum Electronics Conference. Beijing, China: IEEE, 2015: 1-2.
|
[10] |
吴振华, 张开春, 刘盛纲. 扩展互作用谐振腔的模拟分析[J]. 强激光与粒子束, 2007, 19(3):483-486. (Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator[J]. High Power Laser and Particle Beams, 2007, 19(3): 483-486
|
[11] |
Song Yihao, Ding Haibing, Tang Ke, et al. Design of a RF interaction system for a Ka-band EIK[C]//2019 IEEE International Vacuum Electronics Conference. 2019: 1-2.
|
[12] |
丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010
Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
|
[13] |
任绪迅. 毫米波带状注扩展互作用器件高频系统研究[D]. 成都: 电子科技大学, 2017
Ren Xuxun. Study of sheet beam extended interaction resonate in millimeter wave band[D]. Chengdu: University of Electronic Science and Technology, 2017
|
[14] |
张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
|
[15] |
陈姝媛, 阮存军, 阮望, 等. W波段带状注速调管多间隙腔高频结构及其特性[J]. 红外与毫米波学报, 2012, 31(4):360-366. (Chen Shuyuan, Ruan Cunjun, Ruan Wang, et al. RF structure and the cavity characteristics of W-band sheet beam klystron[J]. Journal of Infrared and Millimeter Waves, 2012, 31(4): 360-366 doi: 10.3724/SP.J.1010.2012.00360
|