Zhang Zhiguang, Yang Huizhen, Liu Jinlong, et al. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33: 081004. doi: 10.11884/HPLPB202133.210295
Citation: Zhang Zhiguang, Yang Huizhen, Liu Jinlong, et al. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33: 081004. doi: 10.11884/HPLPB202133.210295

Research progress in deep learning based WFSless adaptive optics system

doi: 10.11884/HPLPB202133.210295
  • Received Date: 2021-07-19
  • Rev Recd Date: 2021-08-11
  • Available Online: 2021-08-20
  • Publish Date: 2021-08-15
  • In recent years, Adaptive Optics (AO) system is developing towards miniaturization and low cost. Because of its simple structure and wide application range, wavefront sensorless (WFSless) AO system has become a research hotspot in related fields. Under the condition that the hardware environment is determined, the system control algorithm determines the correction effect and convergence speed of WFSless AO system. The emerging deep learning and artificial neural network have injected new vitality into the control algorithms of WFSless AO system, and further promoted the theoretical and practical development of WFSless AO. On the basis of summarizing the previous control algorithms of WFSless AO system, the applications of convolution neural network (CNN), long-term memory neural network (LSTM) and deep reinforcement learning in WFSless AO system control in recent years are comprehensively introduced, and characteristics of various deep learning models in WFSless AO system are summarized. Applications of WFSless AO system in astronomical observation, microscopy, ophthalmoscopy, laser telecommunication and other fields are outlined.

  • [1]
    Shorter R S. Principles of adaptive optics, 3rd edn., by Robert K. Tyson[J]. Contemporary Physics, 2011, 52(5): 501-502.
    [2]
    冯麓, 张玉佩, 宋菲君, 等. 夜天文中的自适应光学[J]. 物理, 2018, 47(6):355-366. (Feng Lu, Zhang Yupei, Song Feijun, et al. Adaptive optics for night astronomy[J]. Physics, 2018, 47(6): 355-366 doi: 10.7693/wl20180602
    [3]
    Yazdani R, Hajimahmoodzadeh M, Fallah H R. Adaptive phase aberration correction based on imperialist competitive algorithm[J]. Applied Optics, 2014, 53(1): 132-140. doi: 10.1364/AO.53.000132
    [4]
    杨慧珍, 陈波, 李新阳, 等. 自适应光学系统随机并行梯度下降控制算法实验研究[J]. 光学学报, 2008, 28(2):205-210. (Yang Huizhen, Chen Bo, Li Xinyang, et al. Experimental demonstration of stochastic parallel gradient descent control algorithm for adaptive optics system[J]. Acta Optica Sinica, 2008, 28(2): 205-210 doi: 10.3321/j.issn:0253-2239.2008.02.001
    [5]
    Facomprez A, Beaurepaire E, Débarre D. Accuracy of correction in modal sensorless adaptive optics[J]. Optics Express, 2012, 20(3): 2598-2612. doi: 10.1364/OE.20.002598
    [6]
    Huang Linhai, Rao Changhui. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 2011, 19(1): 371-379. doi: 10.1364/OE.19.000371
    [7]
    方舟, 徐项项, 李鑫, 等. 自适应增益的SPGD算法[J]. 红外与激光工程, 2020, 49:20200274. (Fang Zhou, Xu Xiangxiang, Li Xin, et al. SPGD algorithm with adaptive gain[J]. Infrared and Laser Engineering, 2020, 49: 20200274
    [8]
    Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 2006, 31(7): 939-941. doi: 10.1364/OL.31.000939
    [9]
    杨平, 许冰, 姜文汉, 等. 遗传算法在自适应光学系统中的应用[J]. 光学学报, 2007, 27(9):1628-1632. (Yang Ping, Xu Bing, Jiang Wenhan, et al. Study of a genetic algorithm used in an adaptive optical system[J]. Acta Optica Sinica, 2007, 27(9): 1628-1632 doi: 10.3321/j.issn:0253-2239.2007.09.017
    [10]
    Yang Huizhen, Li Xinyang. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 2011, 43(3): 630-635.
    [11]
    Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 2007, 32(1): 5-7. doi: 10.1364/OL.32.000005
    [12]
    杨慧珍, 吴健, 龚成龙. 基于模型的无波前探测自适应光学系统[J]. 光学学报, 2014, 34:0801002. (Yang Huizhen, Wu Jian, Gong Chenglong. Model-based sensorless adaptive optics system[J]. Acta Optica Sinica, 2014, 34: 0801002 doi: 10.3788/AOS201434.0801002
    [13]
    Wen Lianghua, Yang Ping, Wang Shuai, et al. A high speed model-based approach for wavefront sensorless adaptive optics systems[J]. Optics & Laser Technology, 2018, 99: 124-132.
    [14]
    Huang Linhai. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 2014, 31: 094205. doi: 10.1088/0256-307X/31/9/094205
    [15]
    Wen Lianghua, Yang Ping, Yang Kangjian, et al. Synchronous model-based approach for wavefront sensorless adaptive optics system[J]. Optics Express, 2017, 25(17): 20584-20597. doi: 10.1364/OE.25.020584
    [16]
    Song Hong, Fraanje R, Schitter G, et al. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system[J]. Optics Express, 2010, 18(23): 24070-24084. doi: 10.1364/OE.18.024070
    [17]
    Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990, 348(6298): 221-224. doi: 10.1038/348221a0
    [18]
    Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991, 351(6324): 300-302. doi: 10.1038/351300a0
    [19]
    Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 1993, 32(10): 1720-1727. doi: 10.1364/AO.32.001720
    [20]
    Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238. doi: 10.1364/OL.43.001235
    [21]
    Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826.
    [22]
    Byrd R H, Lu Peihuang, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. doi: 10.1137/0916069
    [23]
    Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/OE.27.000240
    [24]
    Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1251-1258.
    [25]
    Kingma D, Ba J. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint, arXiv: 1412.6980, 2014.
    [26]
    Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 2019, 27(8): 10765-10776. doi: 10.1364/OE.27.010765
    [27]
    Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 2012, 20(25): 27922-27932. doi: 10.1364/OE.20.027922
    [28]
    Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21: 215829.
    [29]
    Ma Huimin, Liu Haiqiu, Qiao Yan, et al. Numerical study of adaptive optics compensation based on convolutional neural networks[J]. Optics Communications, 2019, 433: 283-289. doi: 10.1016/j.optcom.2018.10.036
    [30]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1097-1105.
    [31]
    马慧敏, 焦俊, 乔焰, 等. 一种基于光强图像深度学习的波前复原方法[J]. 激光与光电子学进展, 2020, 57:081103. (Ma Huimin, Jiao Jun, Qiao Yan, et al. Wavefront restoration method based on light intensity image deep learning[J]. Laser & Optoelectronics Progress, 2020, 57: 081103
    [32]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint, arXiv: 1409.1556, 2014.
    [33]
    Guo Hongyang, Xu Yangjie, Li Qing, et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 2019, 19(16): 3533. doi: 10.3390/s19163533
    [34]
    Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 2020, 20(17): 4877. doi: 10.3390/s20174877
    [35]
    Nvidia Tensor RT[EB/OL]. (2021-07-09). https://developer.nvidia.com/tensorrt.
    [36]
    Vera E, Guzmán F, Weinberger C. Boosting the deep learning wavefront sensor for real-time applications [Invited][J]. Applied Optics, 2021, 60(10): B119-B124. doi: 10.1364/AO.417574
    [37]
    Weinberger C, Guzmán F, Vera E. Improved training for the deep learning wavefront sensor[C]//Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 114484G.
    [38]
    Wang Kaiqiang, Zhang Mengmeng, Tang Ju, et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2021, 2: 8. doi: 10.1186/s43074-021-00030-4
    [39]
    He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [40]
    Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [41]
    Xin Qi, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 2019, 27(18): 26102-26119. doi: 10.1364/OE.27.026102
    [42]
    Liu Xuewen, Morris T, Saunter C. Using long short-term memory for wavefront prediction in adaptive optics[C]//Proceeding of the 28th International Conference on Artificial Neural Networks. Munich: Springer, 2019: 537-542.
    [43]
    Chen Ying. LSTM recurrent neural network prediction algorithm based on Zernike modal coefficients[J]. Optik, 2020, 203: 163796. doi: 10.1016/j.ijleo.2019.163796
    [44]
    Swanson R, Lamb M, Correia C, et al. Wavefront reconstruction and prediction with convolutional neural networks[C]//Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 107031F.
    [45]
    Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [46]
    Hu Ke, Xu Bing, Xu Zhenxing, et al. Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning[J]. Optik, 2019, 178: 785-793. doi: 10.1016/j.ijleo.2018.09.160
    [47]
    Hu Ke, Xu Zhenxing, Yang Wei, et al. Build the structure of WFSless AO system through deep reinforcement learning[J]. IEEE Photonics Technology Letters, 2018, 30(23): 2033-2036. doi: 10.1109/LPT.2018.2874998
    [48]
    Konda V R, Tsitsiklis J N. Actor-critic algorithms[C]//Proceedings of Advances in Neural Information Processing Systems. 2000: 1008-1014.
    [49]
    Nousiainen J, Rajani C, Kasper M, et al. Adaptive optics control using model-based reinforcement learning[J]. Optics Express, 2021, 29(10): 15327-15344. doi: 10.1364/OE.420270
    [50]
    Cantalloube F, Farley O, Milli J, et al. Wind-driven halo in high-contrast images. I. Analysis of the focal-plane images of SPHERE[J]. Astronomy and Astrophysics, 2020, 638: A98. doi: 10.1051/0004-6361/201937397
    [51]
    Landman R, Haffert S Y, Radhakrishnan V M, et al. Self-optimizing adaptive optics control with reinforcement learning[C]//Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 1144849.
    [52]
    Por E H, Haffert S Y, Radhakrishnan V M, et al. High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator[C]//Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 1070342.
    [53]
    Gendron E, Léna P. Astronomical adaptive optics. II. Experimental results of an optimized modal control[J]. Astronomy and Astrophysics Supplement Series, 1995, 111: 153-167.
    [54]
    Conan R, Correia C. Object-oriented Matlab adaptive optics toolbox[C]//Proceedings Volume 9148, Adaptive Optics Systems IV. 2014, 9148: 91486C.
    [55]
    Rigaut F, Van Dam M. Simulating astronomical adaptive optics systems using YAO[C]//Third AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes. 2013.
    [56]
    Basden A G, Bharmal N A, Jenkins D, et al. The Durham Adaptive Optics Simulation Platform (DASP): Current status[J]. SoftwareX, 2018, 7: 63-69. doi: 10.1016/j.softx.2018.02.005
    [57]
    Zhu Licheng, Wen Lianghua, Yang Ping, et al. Aberration correction based on wavefront sensorless adaptive optics in membrane diffractive optical telescope[J]. Optics Communications, 2019, 451: 220-225. doi: 10.1016/j.optcom.2019.06.063
    [58]
    Marx V. Microscopy: hello, adaptive optics[J]. Nature Methods, 2017, 14(12): 1133-1136. doi: 10.1038/nmeth.4508
    [59]
    Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 2014, 3: e165.
    [60]
    Hussain S A, Kubo T, Hall N, et al. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope[J]. Journal of Microscopy, 2020.
    [61]
    刘立新, 张美玲, 吴兆青, 等. 自适应光学在荧光显微镜中的应用[J]. 激光与光电子学进展, 2020, 57:120001. (Liu Lixin, Zhang Meiling, Wu Zhaoqing, et al. Application of adaptive optics in fluorescence microscope[J]. Laser & Optoelectronics Progress, 2020, 57: 120001
    [62]
    Qin Zhongya, He Sicong, Yang Chao, et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 2020, 9: 79.
    [63]
    Jian Yifan, Lee Sujin, Ju M J, et al. Lens-based wavefront sensorless adaptive optics swept source OCT[J]. Scientific Reports, 2016, 6: 27620. doi: 10.1038/srep27620
    [64]
    牛超君, 于诗杰, 韩香娥. 无波前探测自适应光学对光通信性能影响分析[J]. 激光与光电子学进展, 2015, 52:080102. (Niu Chaojun, Yu Shijie, Han Xiang’e. Analysis about effect of wavefront sensorless adaptive optics on optical communication[J]. Laser & Optoelectronics Progress, 2015, 52: 080102
    [65]
    徐晓帆, 陆洲. 星地激光通信可靠性保障技术研究现状[J]. 中国电子科学研究院学报, 2018, 13(6):650-657. (Xu Xiaofan, Lu Zhou. Research status of mitigation techniques to assure the reliability of satellite-to-ground laser communications[J]. Journal of CAEIT, 2018, 13(6): 650-657 doi: 10.3969/j.issn.1673-5692.2018.06.005
  • Relative Articles

    [1]Guo Enze, Liu Zhengtang, Cui Bo, Liu Guobin, Shi Hangyu, Jiang Xu. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36(4): 043016. doi: 10.11884/HPLPB202436.230119
    [2]Liu Qi, Du Yinglei, Xiang Rujian, Li Guohui, Zhang Qiushi, Xiang Zhenjiao, Wu Jing, Yue Xian, Bao Anchao, You Jiang. Deep learning phase inversion technique for single frame image based on Walsh function modulation[J]. High Power Laser and Particle Beams, 2024, 36(6): 069002. doi: 10.11884/HPLPB202436.240048
    [3]Zhang Hangyu, Wu Yi, Zhao Shuai, Feng Guoying. Edge quality improvement of ghost imaging based on convolutional neural network[J]. High Power Laser and Particle Beams, 2024, 36(7): 079002. doi: 10.11884/HPLPB202436.240030
    [4]Qiu Congpan, Liu Guodong, Zhang Dayong, Hu Liusen. Research progress in deep learning for wavefront reconstruction and wavefront prediction[J]. High Power Laser and Particle Beams, 2024, 36(7): 071002. doi: 10.11884/HPLPB202436.230430
    [5]Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, Chu Hongyu. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34(11): 112002. doi: 10.11884/HPLPB202234.220023
    [6]He Yongcheng, Zhang Yuliang, Wang Lin, Jin Dapeng, Wu Xuan, Kang Mingtao, Guo Fengqin, Zhu Peng. Prototype of an early warning system based on deep learning for the CSNS accelerator[J]. High Power Laser and Particle Beams, 2021, 33(4): 044008. doi: 10.11884/HPLPB202133.200340
    [7]Shi Zongjia, Xiang Zhenjiao, Du Yinglei, Wan Min, Gu Jingliang, Li Guohui, Xiang Rujian, You Jiang, Wu Jing, Xu Honglai. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011. doi: 10.11884/HPLPB202133.210040
    [8]Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158
    [9]Xiang Wei, Shi Jinfang, Liu Guihua, Xu Feng. Application of deep convolutional neural network in detection of nuclear waste in radiation environment[J]. High Power Laser and Particle Beams, 2019, 31(11): 116001. doi: 10.11884/HPLPB201931.190220
    [10]Chen Lelin, Wei Biao, Li Pengcheng, Feng Peng, Zhou Mi. 252Cf-source-driven nuclear material concentration identification based on deep learning[J]. High Power Laser and Particle Beams, 2018, 30(9): 096001. doi: 10.11884/HPLPB201830.170487
    [11]Huang Wanqing, Zhang Ying, Liu Lanqin, Geng Yuanchao, Wang Wenyi. GRMS specification of high power optics with deformable mirror[J]. High Power Laser and Particle Beams, 2015, 27(05): 051001. doi: 10.11884/HPLPB201527.051001
    [12]yu hao, huang linhai, rao changhui, jiang wenhan. Control of near-field intensity of laser beam based on adaptive optics[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [13]huang lin-hai, rao chang-hui, jiang wen-han. Beam propagation code for ICF device with adaptive optics system[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [14]li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [15]fan cheng yu, wang ying jian, gong zhi ben. Effect of branch points on adaptive optics[J]. High Power Laser and Particle Beams, 2003, 15(05): 0- .
    [16]li xin-yang, wang chun-hong, xian hao, jiang wen-han. Real-time modal reconstruction algorithm for adaptive optics systems[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [17]xi de-xun, zhou chang-bing. Uniformity calibration system of electron beam scan with BP ANN[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [18]shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
  • Cited by

    Periodical cited type(2)

    1. 黄永梅,李宏伟,贺东,王强,郭弘扬,王子豪,唐薇. 深度学习技术在空间激光通信中的应用. 遥测遥控. 2022(04): 89-96 .
    2. 马慧敏,檀磊,张京会,张鹏飞,宁孝梅,刘海秋,高彦伟. 基于深度学习的合成孔径成像系统共共相误差检测研究综述. 量子电子学报. 2022(06): 927-941 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(7)

    Article views (2478) PDF downloads(329) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return