Citation: | He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299 |
[1] |
Vasin M G Ignatiev Yu V, Lakhtikov A E, et al. Energy-resolved X-ray imaging[J]. Spectrochimica Acta Part B, 2007, 62(6): 648-653.
|
[2] |
Walter P, Sarrazin P, Gailhanou M, et al. Full-field XRF instrument for cultural heritage: Application to the study of a Caillebotte painting[J]. X-Ray Spectrometry, 2019, 48(4): 274-280. doi: 10.1002/xrs.2841
|
[3] |
Kulow A, Buzanich A G, Reinholz U, et al. Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded aperture optics[J]. J Anal At Spectrom, 2020, 35(7): 1423-1434. doi: 10.1039/D0JA00146E
|
[4] |
Tsunemi H, Wada M, Hayashida K, et al. X-ray color movie using the charge-coupled device with a direct X-ray detection method[J]. J Appl Phys, 1991, 30(12A): 3540-3544.
|
[5] |
Alfeld M, Janssens K, Sasov A, et al. The use of full-field XRF for simultaneous elemental mapping[C]//Proceedings of AIP Conference. 2010, 1221(1): 111-118.
|
[6] |
Romano F P, Altana C, Cosentino L, et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution[J]. Spectrochimica Acta Part B, 2013, 86(1): 60-65.
|
[7] |
Romano F P, Caliri C, Cosentino L, et al. Macro and micro full field X-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution[J]. Anal Chem, 2014, 86(21): 10892-10899. doi: 10.1021/ac503263h
|
[8] |
Romano F P, Caliri C, Cosentino L, et al. Micro X-ray fluorescence imaging in a tabletop full field-X-ray fluorescence instrument and in a full field-particle induced X-ray emission end station[J]. Anal Chem, 2016, 88(20): 9873-9880. doi: 10.1021/acs.analchem.6b02811
|
[9] |
Zhao W, Sakurai K. CCD camera as feasible large-area-size X-ray detector for X-ray fluorescence spectroscopy and imaging[J]. Rev Sci Instrum, 2017, 88: 063703. doi: 10.1063/1.4985149
|
[10] |
Chantler C T, Olsen K, Dragoset R A, et al. X-ray form factor, attenuation, and scattering tables[OL]. [2021-11-8].https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables.
|
[11] |
姚志明, 段保军, 马继明, 等. 大孔径厚针孔数值模拟研究[J]. 原子能科学技术, 2019, 53(2):379-384. (Yao Zhiming, Duan Baojun, Ma Jiming, et al. Numerical simulation of large thick aperture imaging[J]. Atomic Energy Science and Technology, 2019, 53(2): 379-384 doi: 10.7538/yzk.2018.youxian.0294
|
[12] |
余波, 应阳君, 许海波. 中子半影成像的散射中子对点扩散函数的影响[J]. 强激光与粒子束, 2010, 22(11):2714-2718. (Yu Bo, Ying Yangjun, Xu Haibo. Effect of scattered netrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 2714-2718 doi: 10.3788/HPLPB20102211.2714
|
[13] |
霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 98-100
Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 98-100
|
[14] |
Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
|
[15] |
段泽明, 刘俊, 姜其立, 等. 便携式微束X射线荧光谱仪的研发[J]. 原子能科学技术, 2018, 52(18):2243-2248. (Duan Zeming, Liu Jun, Jiang Qili, et al. Development of portable micro-X-ray fluorescence spectrometer[J]. Atomic Energy Science and Technology, 2018, 52(18): 2243-2248
|
[16] |
Richardson W H. Bayesian-based iterative method of image restoration[J]. J Opt Soc Am, 1972, 62(1): 55-59. doi: 10.1364/JOSA.62.000055
|
[1] | Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320 |
[2] | Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, Wang Tao, Zhang Tianxiong, Rao Daxing, Liu Dong, Cui Yong, Ji Lailin, Shi Haitao, Feng Wei, Sui Zhan. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012. doi: 10.11884/HPLPB202234.210267 |
[3] | Hou Chunyuan, Rao Daxing, Li Fujian, Zheng Quan, Gao Yanqi, Cui Yong, Zhao Xiaohui, He Ruijing, Sui Zhan, Xiang Xia. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33(7): 071005. doi: 10.11884/HPLPB202133.210027 |
[4] | Gao Yanqi, Ji Lailin, Cui Yong, Rao Daxing, Zhao Xiaohui, Feng Wei, Xia Lan, Liu Dong, Wang Tao, Shi Haitao, Li Fujian, Liu Jia, Du Pengyuan, Li Xiaoli, Liu Jiani, Zhang Tianxiong, Shan Chong, Ma Weixin, Sui Zhan, Fu Sizu. kJ low-coherence broadband Nd:glass laser driver facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011004. doi: 10.11884/HPLPB202032.190427 |
[5] | Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007. doi: 10.11884/HPLPB202032.200203 |
[6] | Yu Shijie, Long Minhui, Lu Fang, Han Xiang’e. Experiment of partially coherent and coherent light propagating through a turbulence emulator[J]. High Power Laser and Particle Beams, 2015, 27(01): 011002. doi: 10.11884/HPLPB201527.011002 |
[7] | Kang Dongguo, Li Meng, Gao Yaoming. Radiation pulse shaping for laser indirect-drive central ignition target[J]. High Power Laser and Particle Beams, 2013, 25(01): 57-61. doi: 10.3788/HPLPB20132501.0057 |
[8] | Zou Shengwu, Zhang Tongyi. Spatiotemporal shaping of terahertz pulses using conductive apertures of finite thickness[J]. High Power Laser and Particle Beams, 2013, 25(05): 1325-1331. doi: 10.3788/HPLPB20132505.1325 |
[9] | Zhang Hui, Hou Deting, Li Xia. Coherent control of non-resonant two-photon transition in intense laser field[J]. High Power Laser and Particle Beams, 2013, 25(11): 2861-2864. doi: 10.3788/HPLPB20132511.2861 |
[10] | xu yan, wan yongjian, wu yongqian. Ring source technology based on spatial coherence control[J]. High Power Laser and Particle Beams, 2011, 23(12): 18-19. |
[11] | chen guangming, lin huichuan, pu jixiong. Generation of bottle beam by modulating spatial coherence of light beam[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[12] | yang yuchuan, luo hui, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin. Effect of temporal partial coherence of flat-topped Gauss ultrashort-pulse lasers on coherent combination[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[13] | zheng huan, wang anting, xu lixin, ming hai. Frequencies of intensity fluctuation in linearly chirped Gaussian pulse stacking[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[14] | wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- . |
[15] | zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[16] | wang shuang-yi, lu zhi-wei, lin dian-yang, wang chao, gao hong-yan, dong yong-kang. KrF laser pulse shaping by pulse stacking[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- . |
[17] | wan min, zhang wei, xiang ru-jian, yang rui. Influence of laser spatial coherence on illumination uniformity[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
[18] | xie yong-jie, zhao xue-qing, wamng li-jun, liu jing-ru, yuan xiao. The experimental study of partially coherence light source produced by liquid crystal[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- . |
1. | 张学海,戴聪明,张鑫,魏合理,朱希娟,马静. 相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响. 红外与激光工程. 2019(08): 253-260 . ![]() | |
2. | 李树旺,邵士勇,梅海平,饶瑞中. 气溶胶吸收的光热干涉相位载波算法. 强激光与粒子束. 2016(04): 12-16 . ![]() |