Citation: | He Ze, Huang Ning, Wang Peng, et al. Simulation study of full-field X-ray fluorescence imaging with a pinhole camera[J]. High Power Laser and Particle Beams, 2021, 33: 116001. doi: 10.11884/HPLPB202133.210299 |
[1] |
Vasin M G Ignatiev Yu V, Lakhtikov A E, et al. Energy-resolved X-ray imaging[J]. Spectrochimica Acta Part B, 2007, 62(6): 648-653.
|
[2] |
Walter P, Sarrazin P, Gailhanou M, et al. Full-field XRF instrument for cultural heritage: Application to the study of a Caillebotte painting[J]. X-Ray Spectrometry, 2019, 48(4): 274-280. doi: 10.1002/xrs.2841
|
[3] |
Kulow A, Buzanich A G, Reinholz U, et al. Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded aperture optics[J]. J Anal At Spectrom, 2020, 35(7): 1423-1434. doi: 10.1039/D0JA00146E
|
[4] |
Tsunemi H, Wada M, Hayashida K, et al. X-ray color movie using the charge-coupled device with a direct X-ray detection method[J]. J Appl Phys, 1991, 30(12A): 3540-3544.
|
[5] |
Alfeld M, Janssens K, Sasov A, et al. The use of full-field XRF for simultaneous elemental mapping[C]//Proceedings of AIP Conference. 2010, 1221(1): 111-118.
|
[6] |
Romano F P, Altana C, Cosentino L, et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution[J]. Spectrochimica Acta Part B, 2013, 86(1): 60-65.
|
[7] |
Romano F P, Caliri C, Cosentino L, et al. Macro and micro full field X-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution[J]. Anal Chem, 2014, 86(21): 10892-10899. doi: 10.1021/ac503263h
|
[8] |
Romano F P, Caliri C, Cosentino L, et al. Micro X-ray fluorescence imaging in a tabletop full field-X-ray fluorescence instrument and in a full field-particle induced X-ray emission end station[J]. Anal Chem, 2016, 88(20): 9873-9880. doi: 10.1021/acs.analchem.6b02811
|
[9] |
Zhao W, Sakurai K. CCD camera as feasible large-area-size X-ray detector for X-ray fluorescence spectroscopy and imaging[J]. Rev Sci Instrum, 2017, 88: 063703. doi: 10.1063/1.4985149
|
[10] |
Chantler C T, Olsen K, Dragoset R A, et al. X-ray form factor, attenuation, and scattering tables[OL]. [2021-11-8].https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables.
|
[11] |
姚志明, 段保军, 马继明, 等. 大孔径厚针孔数值模拟研究[J]. 原子能科学技术, 2019, 53(2):379-384. (Yao Zhiming, Duan Baojun, Ma Jiming, et al. Numerical simulation of large thick aperture imaging[J]. Atomic Energy Science and Technology, 2019, 53(2): 379-384 doi: 10.7538/yzk.2018.youxian.0294
|
[12] |
余波, 应阳君, 许海波. 中子半影成像的散射中子对点扩散函数的影响[J]. 强激光与粒子束, 2010, 22(11):2714-2718. (Yu Bo, Ying Yangjun, Xu Haibo. Effect of scattered netrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 2714-2718 doi: 10.3788/HPLPB20102211.2714
|
[13] |
霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 98-100
Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 98-100
|
[14] |
Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
|
[15] |
段泽明, 刘俊, 姜其立, 等. 便携式微束X射线荧光谱仪的研发[J]. 原子能科学技术, 2018, 52(18):2243-2248. (Duan Zeming, Liu Jun, Jiang Qili, et al. Development of portable micro-X-ray fluorescence spectrometer[J]. Atomic Energy Science and Technology, 2018, 52(18): 2243-2248
|
[16] |
Richardson W H. Bayesian-based iterative method of image restoration[J]. J Opt Soc Am, 1972, 62(1): 55-59. doi: 10.1364/JOSA.62.000055
|