Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306
Citation: Fan Mengqiu, Lin Shengtao, Wu han, et al. Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain[J]. High Power Laser and Particle Beams, 2021, 33: 111003. doi: 10.11884/HPLPB202133.210306

Research progress of random fiber lasers’ characteristics in time-frequency-spatial domain

doi: 10.11884/HPLPB202133.210306
  • Received Date: 2021-07-23
  • Rev Recd Date: 2021-11-03
  • Available Online: 2021-11-17
  • Publish Date: 2021-11-15
  • The recent research progress of random distributed feedback fiber lasers in the time-frequency-spatial domain is systemically reviewed in this paper. The factors influencing the time-frequency-spatial dynamic characteristics of random distributed feedback fiber lasers are analyzed and summarized. Finally, the prospects of random distributed feedback fiber lasers used in high-power laser driving facility are put forward, and the potential research area in future is discussed.

  • [1]
    Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 2010, 4(4): 231-235. doi: 10.1038/nphoton.2010.4
    [2]
    Churkin D V, Sugavanam S, Vatnik I D, et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 2015, 7(3): 516-569. doi: 10.1364/AOP.7.000516
    [3]
    胡朋兵, 董新永. 随机分布反馈光纤激光器研究进展[J]. 激光与光电子学进展, 2011, 48:110606. (Hu Pengbing, Dong Xinyong. Research progress in random distributed feedback fiber lasers[J]. Laser & Optoelectronics Progress, 2011, 48: 110606
    [4]
    曹健华, 林圣淘, 王子南等. 超长距离光纤随机激光多点传感系统的设计与实现[J]. 光学学报, 2021, 41:1306006. (Jianhua Cao, Shengtao Lin, Zinan Wang, et al. Design and implementation for ultra-Long-distance multi-point sensing system based on random fiber laser[J]. Acta Optica Sinica, 2021, 41: 1306006 doi: 10.3788/AOS202141.1306006
    [5]
    Turitsyn S K, Babin S A, Churkin D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011
    [6]
    Wu Han, Xiong Ji, Han Bing, et al. Ultra-high speed random bit generation based on Rayleigh feedback assisted ytterbium-doped random fiber laser[J]. Science China Technological Sciences, 2021, 64(6): 1295-1301. doi: 10.1007/s11431-020-1806-7
    [7]
    Lin Shengtao, Wang Zinan, Li Jiaqi, et al. Nonlinear dynamics of four-wave mixing, cascaded stimulated Raman scattering and self Q-switching in a common-cavity ytterbium/Raman random fiber laser[J]. Optics & Laser Technology, 2021, 134: 106613.
    [8]
    González I R R, Raposo E P, Macêdo A M. Coexistence of turbulence-like and glassy behaviours in a photonic system[J]. Scientific Report, 2018, 8: 17046. doi: 10.1038/s41598-018-35434-z
    [9]
    Wang Zinan, Wu Han, Fan Mengqiu, et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 0900506.
    [10]
    Churkin D V, Babin S A, El-Taher A E, et al. Raman fiber lasers with a random distributed feedback based on Rayleigh scattering[J]. Physical Review A, 2010, 82: 033828. doi: 10.1103/PhysRevA.82.033828
    [11]
    Smirnov S V, Churkin D V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser[J]. Optics Express, 2013, 21(18): 21236-21241. doi: 10.1364/OE.21.021236
    [12]
    Kolokolov I V, Lebedev V V, Podivilov E V, et al. Theory of a random fiber laser[J]. Journal of Experimental and Theoretical Physics, 2014, 119(6): 1134-1139. doi: 10.1134/S1063776114120061
    [13]
    Churkin D V, Kolokolov I V, Podivilov E V, et al. Wave kinetics of random fibre lasers[J]. Nature Communications, 2015, 6: 6214. doi: 10.1038/ncomms7214
    [14]
    Lin Shengtao, Wang Zinan, Araújo H A, et al. Ultrafast convergent power-balance model for Raman random fiber laser with half-open cavity[J]. Optics Express, 2020, 28(15): 22500-22510. doi: 10.1364/OE.398386
    [15]
    Du Xueyuan, Zhang Hanwei, Wang Xiaolin, et al. Tunable random distributed feedback fiber laser operating at 1μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908
    [16]
    Fan Mengqiu, Zong Zhaoyu, Tian Xiaocheng, et al. Comprehensive investigations on 1053 nm random distributed feedback fiber laser[J]. IEEE Photonics Journal, 2017, 9: 1501109.
    [17]
    Wu Han, Wang Zinan, Sun Wei, et al. 1.5μm low threshold, high efficiency random fiber laser with hybrid erbium-Raman gain[J]. Journal of Lightwave Technology, 2018, 36(4): 844-849. doi: 10.1109/JLT.2017.2712739
    [18]
    Wu Han, Wang Zinan, Fan Mengqiu, et al. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser[J]. Laser Physics Letters, 2018, 15: 035105. doi: 10.1088/1612-202X/aa9f66
    [19]
    Wu Han, Wang Zinan, He Qiheng, et al. Common-cavity ytterbium/Raman random distributed feedback fiber laser[J]. Laser Physics Letters, 2017, 14: 065101. doi: 10.1088/1612-202X/aa6dbf
    [20]
    Agrawal G P. 非线性光纤光学[M]. 5版. 贾东方, 葛春风, 王肇颖, 等译. 北京: 电子工业出版社, 2014

    . (Agrawal G P. Nonlinear fiber optics[M]. Jia Dongfang, Ge Chunfeng, Wang Zhaoying, et al, trans. Beijing: Publishing House of Electronics Industry, 2014
    [21]
    Kuznetsov A G, Podivilov E V, Babin S A. Actively Q-switched Raman fiber laser[J]. Laser Physics Letters, 2015, 12: 035102. doi: 10.1088/1612-2011/12/3/035102
    [22]
    Bravo M, Fernandez-Vallejo M, Lopez-Amo M. Internal modulation of a random fiber laser[J]. Optics Letters, 2013, 38(9): 1542-1544. doi: 10.1364/OL.38.001542
    [23]
    Xu Jiangming, Ye Jun, Xiao Hu, et al. Narrow-linewidth Q-switched random distributed feedback fiber laser[J]. Optics Express, 2016, 24(17): 19203-19210. doi: 10.1364/OE.24.019203
    [24]
    Wu Han, Wang Zinan, He Qiheng, et al. Polarization-modulated random fiber laser[J]. Laser Physics Letters, 2016, 13: 055101. doi: 10.1088/1612-2011/13/5/055101
    [25]
    Wang Simin, Lin Wei, Chen Weicheng, et al. Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser[J]. Applied Physics Express, 2016, 9: 032701. doi: 10.7567/APEX.9.032701
    [26]
    Tang Yulong, Xu Jianqiu. A random Q-switched fiber laser[J]. Scientific Reports, 2015, 5: 9338. doi: 10.1038/srep09338
    [27]
    Zeng Xiaopei, Zhang Weili, Ma Rui, et al. Regulation of a pulsed random fiber laser in the Q-switched regime[J]. Laser Physics Letters, 2016, 13: 115105. doi: 10.1088/1612-2011/13/11/115105
    [28]
    Xu Jiangming, Ye Jun, Liu Wei, et al. Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser[J]. Photonics Research, 2017, 5(6): 598-603. doi: 10.1364/PRJ.5.000598
    [29]
    Yao Baicheng, Rao Yunjiang Wang Zinan, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers[J]. Scientific Reports, 2015, 5: 18526.
    [30]
    叶俊. 高功率随机光纤激光及其光谱调控[D]. 长沙: 国防科学技术大学, 2018

    Ye Jun. High power random fiber laser and its spectral manipulation property[D]. Changsha: National University of Defense Technology, 2018
    [31]
    吴函. 新型随机光纤激光器的实现及应用[D]. 成都: 电子科技大学, 2019

    Wu Han. Research on the realization of novel random fiber laser and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [32]
    Churkin D V, Smirnov S V, Podivilov E V. Statistical properties of partially coherent cw fiber lasers[J]. Optics Letters, 2010, 35(19): 3288-3290. doi: 10.1364/OL.35.003288
    [33]
    Gorbunov O A, Sugavanam S, Vatnik I D, et al. Statistical properties of radiation of multiwavelength random DFB fiber laser[J]. Optics Express, 2016, 24(17): 19417-19423. doi: 10.1364/OE.24.019417
    [34]
    Hammani K, Finot C, Dudley J M, et al. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers[J]. Optics Express, 2008, 16(21): 16467-16474. doi: 10.1364/OE.16.016467
    [35]
    Gorbunov O A, Sugavanam S, Churkin D V. Intensity dynamics and statistical properties of random distributed feedback fiber laser[J]. Optics Letters, 2015, 40(8): 1783-1786. doi: 10.1364/OL.40.001783
    [36]
    Xu Jiangming, Wu Jian, Ye Jun, et al. Optical rogue wave in random fiber laser[J]. Photonics Research, 2020, 8: 01000001.
    [37]
    Gorbunov O A, Sugavanam S, Vatnik I D, et al. Poisson distribution of extreme events in radiation of random distributed feedback fiber laser[J]. Optics Letters, 2020, 45(8): 2375-2378. doi: 10.1364/OL.390492
    [38]
    Wu Han, Han Bing, Wang Zinan, et al. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser[J]. Chinese Optics Letters, 2020, 19: 021402.
    [39]
    Xu Jiangming, Lou Zhaokai, Ye Jun, et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 2017, 25(5): 5609-5617. doi: 10.1364/OE.25.005609
    [40]
    Dong Jinyan, Zhang Lei, Jiang Huawei, et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 2018, 26(5): 5275-5280. doi: 10.1364/OE.26.005275
    [41]
    Ye Jun, Xu Jiangming, Song Jiaxin, et al. Pump scheme optimization of an incoherently pumped high-power random fiber laser[J]. Photonics Research, 2019, 7(9): 977-983. doi: 10.1364/PRJ.7.000977
    [42]
    Zhang Yang, Song Jiaxin, Ye Jun, et al. Tunable random Raman fiber laser at 1.7 µm region with high spectral purity[J]. Optics Express, 2019, 27(20): 28800-28807. doi: 10.1364/OE.27.028800
    [43]
    Han Bing, Rao Yunjiang, Wu Han, et al. Low-noise high-order Raman fiber laser pumped by random lasing[J]. Optics Letters, 2020, 45(20): 5804-5807. doi: 10.1364/OL.405899
    [44]
    Andreasen J, Cao Hui. Numerical study of amplified spontaneous emission and lasing in random media[J]. Physical Review A, 2010, 82: 063835. doi: 10.1103/PhysRevA.82.063835
    [45]
    Cao Hui. Lasing in random media[J]. Waves in Random Media, 2003, 13(3): R1-R39. doi: 10.1088/0959-7174/13/3/201
    [46]
    Bliokh Y, Chaikina E I, Vatnik I D, et al. Temporal variation of the spectrum of a continuously pumped random fiber laser: phenomenological model[J]. Journal of the Optical Society of America B, 2019, 36(2): 408-414. doi: 10.1364/JOSAB.36.000408
    [47]
    Sugavanam S, Sorokina M, Churkin D V. Spectral correlations in a random distributed feedback fibre laser[J]. Nature Communications, 2017, 8: 15514. doi: 10.1038/ncomms15514
    [48]
    Samorodnitsky G, Taqqu M S. Stable non-Gaussian random processes[M]. New York: Chapman and Hall, 1994.
    [49]
    Lima B C, Gomes A S L, Pincheira P I R, et al. Observation of Lévy statistics in one-dimensional erbium-based random fiber laser[J]. Journal of the Optical Society of America B, 2017, 34(2): 293-299. doi: 10.1364/JOSAB.34.000293
    [50]
    Roa Gonzalez I R, Lima B C, Pincheira P I R, et al. Turbulence hierarchy in a random fibre laser[J]. Nature Communications, 2017, 8: 15731. doi: 10.1038/ncomms15731
    [51]
    Lima B C, Pincheira P I R, Raposo E P, et al. Extreme-value statistics of intensities in a cw-pumped random fiber laser[J]. Physical Review A, 2017, 96: 013834. doi: 10.1103/PhysRevA.96.013834
    [52]
    Li Jiaqi, Wu Han, Wang Zinan, et al. Lévy spectral intensity statistics in a Raman random fiber laser[J]. Optics Letters, 2019, 44(11): 2799-2802. doi: 10.1364/OL.44.002799
    [53]
    Mehta D S, Naik D N, Singh R K, et al. Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity[J]. Applied Optics, 2012, 51(12): 1894-1904. doi: 10.1364/AO.51.001894
    [54]
    Wang Fei, Liu Xianlong, Yuan Yangsheng, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816. doi: 10.1364/OL.38.001814
    [55]
    郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003. (Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469
    [56]
    马瑞. 光纤随机激光模式调控与应用研究[D]. 成都: 电子科技大学, 2019

    Ma Rui. Research on mode modulation of random fiber laser and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [57]
    He Jijun, Chan W K E, Cheng Xin, et al. Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback[J]. Advanced Optical Materials, 2018, 6: 1701187. doi: 10.1002/adom.201701187
    [58]
    Redding B, Choma M A, Cao Hui. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics, 2012, 6(6): 355-359. doi: 10.1038/nphoton.2012.90
    [59]
    Ma Rui, Rao Yunjiang, Zhang Weili, et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 0900106.
    [60]
    Ma Rui, Li Jiaqi, Guo Jiayu, et al. High-power low spatial coherence random fiber laser[J]. Optics Express, 2019, 27(6): 8738-8744. doi: 10.1364/OE.27.008738
    [61]
    Ma Rui, Zhang Weili, Guo Jiayu, et al. Decoherence of fiber supercontinuum light source for speckle-free imaging[J]. Optics Express, 2018, 26(20): 26758-26765. doi: 10.1364/OE.26.026758
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zheng Wanguo, Tian Ye, Han Wei, Chai Xiangxu, Deng Xuewei, Liu Taixiang, Liao Wei. Research progress on loading capability of high-power solid-state laser facilities[J]. High Power Laser and Particle Beams, 2023, 35(6): 061001. doi: 10.11884/HPLPB202335.220402
    [3]Zong Zhaoyu, Zhao Junpu, Li Sen, Liang Yue, Yao Ke, Tian Xiaocheng, Huang Xiaoxia, Chen Bo, Zheng Wanguo. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34(3): 031011. doi: 10.11884/HPLPB202234.210288
    [4]Liu Lei, Wang Wentao, Wang Chao, Wang Gang, Liu Yang, Jia Youquan, Li Ning, Lv Kunpeng, Chen Lu. High power solid state laser operating in continuous / pulse composite mode[J]. High Power Laser and Particle Beams, 2022, 34(3): 031007. doi: 10.11884/HPLPB202234.210292
    [5]Guo Huaiwen, Zhou Wei, Ye Lang, Du Weifeng, Tan ning, Deng Xuewei, Huang Xiaoxia, Zhao Bowang, Zhong Wei, Wang Fang. Effect of crystals’ surface shape distortion on conversion efficiency of third harmonic generation[J]. High Power Laser and Particle Beams, 2020, 32(6): 061002. doi: 10.11884/HPLPB202032.200046
    [6]Zheng Wanguo, Li Ping, Zhang Rui, Zhang Ying, Deng Xuewei, Xu Dangpeng, Huang Xiaoxia, Wang Fang, Zhao Junpu, Han Wei. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011003. doi: 10.11884/HPLPB202032.190469
    [7]Shi Yiping, Fan Yajun, Yi Chaolong, Zhu Sitao, Xia Wenfeng. Analysis of aperture antenna radiation characteristics fed by impulse signal on time domain[J]. High Power Laser and Particle Beams, 2016, 28(09): 093001. doi: 10.11884/HPLPB201628.151272
    [8]Chen Haiyan, Xiong Xiangzheng, Chen Kaiya, Liao Cheng. Simplified method for fast calculating time-domain radiation field of pulsed antenna arrays[J]. High Power Laser and Particle Beams, 2016, 28(08): 085003. doi: 10.11884/HPLPB201628.151295
    [9]Jia Rui, Zeng Yonghu, Wang Chuanchuan. Uniformity of electromagnetic field in a pulse excited reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103220. doi: 10.11884/HPLPB201527.103220
    [10]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, He Qun, Zhou Hai, Zheng Wanguo, Zhou Guorui. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beams, 2015, 27(03): 032033. doi: 10.11884/HPLPB201527.032033
    [11]Shi Lihua, Zhang Qi, Zhou Yinghui, Zhou Bihua. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25(02): 531-536. doi: 10.3788/HPLPB20132502.0531
    [12]Zeng Peiying, Tang Xiaoyun, Yang Xuedong, Ji Tong, Jiang Minhua, Zhu Baoqiang, Zhu Jianqiang, Liu Dekang, Shen Liren. Design of Shenguang-Ⅱ facility centralized control system[J]. High Power Laser and Particle Beams, 2012, 24(11): 2595-2598. doi: 10.3788/HPLPB20122411.2595
    [13]li hai, liang yue, zhao runchang, li ping. Waveform control technique of high power laser pulse shaping[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [14]wang bin, zhang tao, yang pengqian, wang yong, zhu jianqiang. Piezoelectric stepper actuator in high power laser facility[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]yu ying, zhao feng, li wenbo, zhang lin, yuan xiaodong. Measurement and analysis of airborne molecular contaminants in high power laser facility[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [16]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]liu hong-jie, jing feng, zuo yan-lei, wei xiao-feng, hu dong-xia, peng zhi-tao, li qiang, zhou wei, zhang kun, jiang lei, li zhi-jun, zuo ming. Nonlinear propagation of localized wavefront deformation in high-power laser facility[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]yang jing, zhang xiao-min, wang wen-yi, su jing-qin, jing feng, hu dong-xia, yuan jing, shi zhi-quan, zhang rui. Improving output capability of high-power laser at short pulse duration using different laser glasses together in amplifier[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [19]yang jing, zhang xiao-min, hu dong-xia, su jing-qin, wang wen-yi, yuan jing, shi zhi-quan, xu lan, . Comprehensive evaluation for system design of high- power laser facility[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [20]lin zun-qi, wang shi-ji, fan dian-yuan, gu yuan, zheng zhi-jian, zhu jian-qiang, zhu jian, cai xi-jie, huang guan-long, dai ya-ping, yang yi. Successful operation of 8 beam SG-Ⅱlaserfacility for both 1w 0 and 3w 0 output[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(3)

    1. Shengtao LIN,Zinan WANG,Jiaojiao ZHANG,Pan WANG,Han WU,Yifei QI. Radiation build-up and dissipation in Raman random fiber laser. Science China(Information Sciences). 2024(01): 254-260 .
    2. 马小雅,叶俊,梁峻锐,何俊鸿,张扬,许将明,周朴,姜宗福. 基于随机光纤激光器的多奇点涡旋光束. 光学学报. 2024(10): 401-411 .
    3. 杨茜,周泽中,张祖兴. 频率间隔可切换多波长随机光纤激光器. 光子学报. 2022(12): 64-71 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.3 %FULLTEXT: 24.3 %META: 69.5 %META: 69.5 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.5 %其他: 0.5 %Canada: 0.4 %Canada: 0.4 %China: 0.7 %China: 0.7 %Edinburg: 0.0 %Edinburg: 0.0 %Germany: 0.2 %Germany: 0.2 %India: 0.3 %India: 0.3 %Indianapolis: 0.2 %Indianapolis: 0.2 %Jaipur: 0.3 %Jaipur: 0.3 %Mexico: 0.1 %Mexico: 0.1 %Pakistan: 0.1 %Pakistan: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Russian Federation: 0.5 %Russian Federation: 0.5 %Spain: 0.5 %Spain: 0.5 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %上海: 4.0 %上海: 4.0 %东莞: 0.7 %东莞: 0.7 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伯克利: 0.1 %伯克利: 0.1 %保定: 0.4 %保定: 0.4 %信阳: 0.1 %信阳: 0.1 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %北京: 6.3 %北京: 6.3 %北海: 0.0 %北海: 0.0 %十堰: 0.3 %十堰: 0.3 %南京: 0.2 %南京: 0.2 %南昌: 0.0 %南昌: 0.0 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.6 %合肥: 0.6 %吉隆坡: 0.1 %吉隆坡: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %圣塞瓦斯蒂安德洛斯雷埃斯: 0.2 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %孟买: 0.1 %孟买: 0.1 %宁波: 0.2 %宁波: 0.2 %安德森: 0.0 %安德森: 0.0 %宜春: 0.2 %宜春: 0.2 %宣城: 0.3 %宣城: 0.3 %川崎: 0.1 %川崎: 0.1 %巴格达: 0.1 %巴格达: 0.1 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %广州: 1.0 %广州: 1.0 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.3 %张家口: 0.3 %张家界: 0.3 %张家界: 0.3 %怀化: 0.0 %怀化: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 5.7 %成都: 5.7 %扬州: 0.2 %扬州: 0.2 %斯特拉斯堡: 0.1 %斯特拉斯堡: 0.1 %新乡: 0.0 %新乡: 0.0 %新奥尔良: 0.0 %新奥尔良: 0.0 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.9 %杭州: 0.9 %桂林: 0.2 %桂林: 0.2 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 2.7 %深圳: 2.7 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.8 %漯河: 0.8 %潘普洛纳: 0.2 %潘普洛纳: 0.2 %烟台: 0.0 %烟台: 0.0 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.3 %莫斯科: 0.3 %菏泽: 0.1 %菏泽: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.3 %西宁: 32.3 %西安: 0.6 %西安: 0.6 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.6 %郑州: 1.6 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %锦州: 0.0 %锦州: 0.0 %长春: 0.6 %长春: 0.6 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %雪兰莪: 0.1 %雪兰莪: 0.1 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他CanadaChinaEdinburgGermanyIndiaIndianapolisJaipurMexicoPakistanRochesterRussian FederationSpainUnited States[]上海东莞中卫中山临汾丹东丽水伊利诺伊州伯克利保定信阳兰州内江加利福尼亚州北京北海十堰南京南昌厦门台州合肥吉隆坡哈尔滨哥伦布嘉兴圣塞瓦斯蒂安德洛斯雷埃斯天津太原孟买宁波安德森宜春宣城川崎巴格达常州常德广州库比蒂诺廊坊张家口张家界怀化惠州成都扬州斯特拉斯堡新乡新奥尔良昆明晋城普洱杭州桂林榆林武汉汕头沈阳洛杉矶洛阳济南深圳温州湖州湘潭漯河潘普洛纳烟台盐城石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科菏泽衡阳衢州襄阳西宁西安西雅图贵阳费利蒙运城邯郸郑州鄂州重庆金华锦州长春长沙长治雪兰莪青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article views (1592) PDF downloads(145) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return