Citation: | Wang Pengfei, Liu Mo, Zhang Jiquan, et al. Watt-level ~3 μm laser in AlF3-based glass fiber[J]. High Power Laser and Particle Beams, 2021, 33: 111001. doi: 10.11884/HPLPB202133.210311 |
A mid-infrared fiber laser operating at λ≈3 μm is demonstrated using a Ho3+/Pr3+ co-doped AlF3-based glass fiber as a gain fiber. Under 1150 nm single-mode fiber laser pumping, the fixed-wavelength laser had maximum output power of 1.02 W, a slope efficiency of 10.7%, and M2≈1.2. The results prove this type of fiber is a potential gain medium for more powerful mid-infrared fiber lasers.
[1] |
Zhu Xiushan, Jain R. Watt-level 100-nm tunable 3- μm fiber laser[J]. IEEE Photonics Technol Lett, 2008, 20(2): 156-158. doi: 10.1109/LPT.2007.912495
|
[2] |
Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Opt Lett, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233
|
[3] |
Tsang Y H, El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~ 1.1 μm by an Yb fiber laser[J]. Laser Phys Lett, 2011, 8(11): 818-822. doi: 10.1002/lapl.201110068
|
[4] |
Sumiyoshi T, Sekita H, Arai T, et al. High-power continuous-wave 3- and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications[J]. IEEE J Sel Top Quantum Electron, 1999, 5(4): 936-943. doi: 10.1109/2944.796314
|
[5] |
Pollnan M. The route toward a diode-pumped 1-W erbium 3-μm fiber laser[J]. IEEE J Quantum Electron, 1997, 33(11): 1982-1990. doi: 10.1109/3.641313
|
[6] |
Li Jianfeng, Luo Hongyu, Wang Lele, et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Opt Express, 2015, 23(17): 22362-22370. doi: 10.1364/OE.23.022362
|
[7] |
Li Jianfeng, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Opt Lett, 2011, 36(18): 3642-3644. doi: 10.1364/OL.36.003642
|
[8] |
Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser[J]. Opt Lett, 1999, 24(16): 1133-1135. doi: 10.1364/OL.24.001133
|
[9] |
Hudson D D, Williams R J, Withford M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Opt Lett, 2013, 38(14): 2388-2390. doi: 10.1364/OL.38.002388
|
[10] |
Frischat G H, Hueber B, Ramdohr B. Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water[J]. J Non-Cryst Solids, 2001, 284(1/3): 105-109.
|
[11] |
Wang Yuhu, Sawanobori N, Nagahama S. Formation of fluoride glasses based on AlF3—YF3—PbF2 system[J]. J Non-Cryst Solids, 1991, 128(3): 322-325. doi: 10.1016/0022-3093(91)90469-M
|
[12] |
Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Opt Lett, 2018, 43(5): 971-974. doi: 10.1364/OL.43.000971
|
[13] |
Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Opt Lett, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542
|
[14] |
Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics J, 2015, 7: 1502309.
|
[15] |
Jia S J, Jia Z X, Yao C F, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Phys, 2018, 28: 015802. doi: 10.1088/1555-6611/aa962e
|
[16] |
Wang Shunbin, Zhang Jiquan, Xu Niannian, et al. 2.9 μm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Opt Lett, 2020, 45(5): 1216-1219. doi: 10.1364/OL.384216
|