Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Akinyimika Adewale, Wang Yulei, Bai Zhenxu, et al. Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy[J]. High Power Laser and Particle Beams, 2021, 33: 111007. doi: 10.11884/HPLPB202133.210313
Citation: Akinyimika Adewale, Wang Yulei, Bai Zhenxu, et al. Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy[J]. High Power Laser and Particle Beams, 2021, 33: 111007. doi: 10.11884/HPLPB202133.210313

Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy

doi: 10.11884/HPLPB202133.210313
Funds:  National Natural Science Foundation of China (62075056)
More Information
  • Author Bio:

    Akinyimika Adewale: walestev2012@gmail.com

  • Corresponding author: Wang Yulei, wyl@hebut.edu.cn
  • Received Date: 2021-07-24
  • Accepted Date: 2021-11-02
  • Rev Recd Date: 2021-11-02
  • Available Online: 2021-11-18
  • Publish Date: 2021-11-15
  • Stimulated Brillouin scattering (SBS) is a third-order nonlinear process, which is phased conjugation reflected in the SBS phase conjugation mirror (SBS-PCM). Therefore, it is a very useful tool for the compensation of wavefront distortion induced by strongly thermally stressed active material, especially in high-power and high-energy lasers. To maximize the effectiveness of SBS-PCM, many research efforts have been poured in both theoretically and experimentally in the past decades. Several researchers have studied the liquid medium that is the best fit for SBS-PCM in high power laser systems; some have investigated the geometry (such as two-cell structure, choice of the optimum parameters, and the addition of a rotating wedge) of the system that will give the most appropriate desired characteristics; while some researched the impurities of the selected liquid. This work presents a review of the factors determining the performance of SBS-PCM, the applications of SBS-PCM in high power lasers, and recent scientific achievements in the SBS-PCM high power laser systems. This work is proposed as a reference and guiding manual for SBS-PCM-related experiments and research.

  • loading
  • [1]
    González M, Stehlé C, Audit E, et al. Astrophysical radiative shocks: from modeling to laboratory experiments[J]. Laser and Particle Beams, 2006, 24(4): 535-540. doi: 10.1017/S026303460606071X
    [2]
    Liu Jianxun, Ma Yanyun, Yang Xiaohu, et al. High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19: 015001. doi: 10.1088/1009-0630/19/1/015001
    [3]
    Yang Yue, Zhao Zongqing, Zheng Jianhua, et al. Production of bright high-energy X-rays based on interaction of laser and near-critical-density plasma[J]. High Power Laser and Particle Beams, 2017, 29: 082003. doi: 10.11884/HPLPB201729.170138
    [4]
    Santos J J, Bailly-Grandvaux M, Ehret M, et al. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics[J]. Physics of Plasmas, 2018, 25: 056705. doi: 10.1063/1.5018735
    [5]
    Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
    [6]
    Magnusson J, Gonoskov A, Marklund M. Energy partitioning and electron momentum distributions in intense laser-solid interactions[J]. The European Physical Journal D, 2017, 71: 231. doi: 10.1140/epjd/e2017-80228-1
    [7]
    Kluge T, Rödel M, Metzkes-Ng J, et al. Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser[J]. Physical Review X, 2018, 8: 031068.
    [8]
    Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [9]
    Xue Kun, Dou Zhenke, Wan Feng, et al. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5: 054402. doi: 10.1063/5.0007734
    [10]
    Hoffmann D H H, Blazevic A, Ni P, et al. Present and future perspectives for high energy density physics with intense heavy ion and laser beams[J]. Laser and Particle Beams, 2005, 23(1): 47-53.
    [11]
    Hu Yanting, Zhao Jie, Zhang Hao, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 2021, 118: 054101. doi: 10.1063/5.0028203
    [12]
    Weichman K, Robinson A P L, Murakami M, et al. Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an applied seed magnetic field[J]. New Journal of Physics, 2020, 22: 113009. doi: 10.1088/1367-2630/abc496
    [13]
    Rosmej O N, Gyrdymov M, Günther M M, et al. High-current laser-driven beams of relativistic electrons for high energy density research[J]. Plasma Physics and Controlled Fusion, 2020, 62: 115024. doi: 10.1088/1361-6587/abb24e
    [14]
    Domański J, Badziak J. Generation of ion beams from high-Z target irradiated by laser pulse of ultra-relativistic intensity[J]. Acta Physica Polonica A, 2020, 138(4): 586-592. doi: 10.12693/APhysPolA.138.586
    [15]
    Liang Zhenfeng, Shen Baifei, Zhang Xiaomei, et al. High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser[J]. Matter and Radiation at Extremes, 2020, 5: 054401. doi: 10.1063/5.0004524
    [16]
    Domański J, Badziak J. Properties of heavy ion beams produced by a PW sub-picosecond laser[J]. Journal of Instrumentation, 2020, 15: C05037. doi: 10.1088/1748-0221/15/05/C05037
    [17]
    Frost M, Curry C B, Glenzer S H. Laser cutting apparatus for high energy density and diamond anvil cell science[J]. Journal of Instrumentation, 2020, 15: P05004. doi: 10.1088/1748-0221/15/05/P05004
    [18]
    Kumar S, Park J, Nam S H, et al. Laser-induced plasma generated by a 532 nm pulsed laser in bulk water: unexpected line-intensity variation with water temperature and the possible underlying physics[J]. Plasma Science and Technology, 2020, 22: 074009. doi: 10.1088/2058-6272/ab812e
    [19]
    Savelyev M S, Agafonova N O, Vasilevsky P N, et al. Effects of pulsed and continuous-wave laser radiation on the fabrication of tissue-engineered composite structures[J]. Optical Engineering, 2020, 59: 061623.
    [20]
    Zhu Chenguang, Zhao Dongmei, Wang Kedian, et al. Direct laser writing of graphene films from a polyether ether ketone precursor[J]. Journal of Materials Science, 2019, 54(5): 4192-4201. doi: 10.1007/s10853-018-3123-5
    [21]
    Luo Dan, Liu Ying, Li Xiangyu, et al. Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20: 075504. doi: 10.1088/2058-6272/aabc5d
    [22]
    Bibeau C, Bayramian A, Beach R J, et al. Mercury and beyond: diode-pumped solid-state lasers for inertial fusion energy[J]. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2000, 1(6): 745-749.
    [23]
    Kawashima T, Kanabe T, Matsui H, et al. Design and performance of a diode-pumped Nd: silica-phosphate glass Zig-Zag slab laser amplifier for inertial fusion energy[J]. Japanese Journal of Applied Physics, 2001, 40(11R): 6415-6425.
    [24]
    Zel’Dovich B Y, Popovichev V I, Ragulskii V V, et al. Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering[J]. JETP Letters, 1972, 15: 109-112.
    [25]
    Wang Hongli, Cha S, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 2019, 27(7): 9895-9905. doi: 10.1364/OE.27.009895
    [26]
    Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM[J]. Optics Express, 2018, 26(6): 6560-6571. doi: 10.1364/OE.26.006560
    [27]
    Tang Xiongxin, Qiu Jisi, Fan Zhongwei, et al. Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy[J]. Optical Materials, 2017, 67: 64-69. doi: 10.1016/j.optmat.2017.03.044
    [28]
    Omatsu T, Kong H J, Park S, et al. The current trends in SBS and phase conjugation[J]. Laser and Particle Beams, 2012, 30(1): 117-174. doi: 10.1017/S0263034611000644
    [29]
    Shin J S, Park S, Kong H J. Compensation of the thermally induced depolarization in a double-pass Nd: YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror[J]. Optics Communications, 2010, 283(11): 2402-2405. doi: 10.1016/j.optcom.2010.02.013
    [30]
    Zhang Ying, Ke Xizheng, Chen Mingsha. Simulation experiment of wavefront distortion correction in stimulated Brillouin scattering[J]. Infrared and Laser Engineering, 2018, 47: 1122001. doi: 10.3788/IRLA201847.1122001
    [31]
    Raab V, Heuer A, Schultheiss J, et al. Transverse effects in phase conjugate laser mirrors based on stimulated Brillouin scattering[J]. Chaos, Solitons & Fractals, 1999, 10(4/5): 831-838.
    [32]
    Lamb R A, Damzen M J. Phase locking of multiple stimulated Brillouin scattering by a phase-conjugate laser resonator[J]. Journal of the Optical Society of America B, 1996, 13(7): 1468-1472. doi: 10.1364/JOSAB.13.001468
    [33]
    Chen Xudong, Chang Chengcheng, Pu Jixiong. Stimulated Brillouin scattering phase conjugation of light beams carrying orbit angular momentum (Invited Paper)[J]. Chinese Optics Letters, 2017, 15: 030006. doi: 10.3788/COL201715.030006
    [34]
    Qiu Jisi, Tang Xiongxin, Fan Zhongwei, et al. High repetition rate and high beam quality joule level Nd: YAG nanosecond laser for Thomson scattering diagnosis[J]. Acta Physica Sinica, 2016, 65: 154204. doi: 10.7498/aps.65.154204
    [35]
    Fan Zhongwei, Qiu Jisi, Tang Xiongxin, et al. A 100 Hz 3.31 J all-solid-state high beam quality Nd: YAG laser for space debris detecting[J]. Acta Physica Sinica, 2017, 66: 054205. doi: 10.7498/aps.66.054205
    [36]
    Zhu Xuehua, Wu Daohua, Wang Guanling, et al. High efficiency laser spatial beam smoothing based on stimulated Brillouin scattering[J]. Laser Physics, 2019, 29: 065402. doi: 10.1088/1555-6611/ab16e0
    [37]
    Kmetik V, Yoshida H, Fujita H, et al. Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids[C]. Proc. SPIE: Advanced High-Power Lasers, 2000, 3889: 818-826.
    [38]
    Tsubakimoto K, Yoshida H, Miyanaga N. High-average-power green laser using Nd: YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror[J]. Optics Express, 2016, 24(12): 12557-12564. doi: 10.1364/OE.24.012557
    [39]
    Qiu Jisi, Tang Xiongxin, Fan Zhongwei, et al. 200 Hz repetition frequency joule-level high beam quality Nd: YAG nanosecond laser[J]. Optics Communications, 2016, 368: 68-72. doi: 10.1016/j.optcom.2016.02.003
    [40]
    Park S, Cha S, Oh J, et al. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation[J]. Optics Express, 2016, 24(8): 8641-8646. doi: 10.1364/OE.24.008641
    [41]
    Yoshida H, Tsubakimoto K, Fujita H, et al. Stimulated-Brillouin-scattering via phase-conjugation-mirror for high-average-power Nd: YAG laser systems[C]//Proceedings of 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). IEEE, 2011.
    [42]
    Yoshida H, Nakatsuka M, Hatae T, et al. YAG laser perfomance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60[J]. Japanese Journal of Applied Physics, 2003, 42(2R): 439-442.
    [43]
    Kornev A F, Makarov A M, Katsev Y V, et al. 2 Joule 10 Hz flashlamp-pumped 1047 nm Nd: YLF laser with near-diffraction-limited beam quality[C]//Proceedings of 2020 International Conference Laser Optics (ICLO). IEEE, 2020.
    [44]
    Wang Jianlei, Zhao Kaiqi, Feng Tao, et al. 1.5 J high-beam-quality Nd: LuAG ceramic active mirror laser amplifier[J]. Chinese Optics Letters, 2020, 18: 021401. doi: 10.3788/COL202018.021401
    [45]
    Jaberi M, Farahbod A H, Soleimani H R. Effect of pump mode structure on reflectance of SBS mirrors[J]. Optical and Quantum Electronics, 2017, 49: 53. doi: 10.1007/s11082-017-0890-1
    [46]
    Ding Jianyong, Yu Guangli, Fang Chunqi, et al. High beam quality of nanosecond Nd: YAG slab laser system with SBS-PCM[J]. Optics Communications, 2020, 475: 126273. doi: 10.1016/j.optcom.2020.126273
    [47]
    Brignon A, Huignard J P. Phase conjugate laser optics[M]. Hoboken: John Wiley & Sons, 2004.
    [48]
    Fisher R A. Optical phase conjugation[M]. New York: Academic Press, 1983.
    [49]
    Hasi W L J, Lu Z W, Gong S, et al. Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability[J]. Applied Optics, 2008, 47(7): 1010-1014. doi: 10.1364/AO.47.001010
    [50]
    Guo X Y, Hasi W L J, Zhong Z M, et al. Research on the SBS mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 2012, 30(4): 525-530. doi: 10.1017/S0263034612000390
    [51]
    Wang Y L, Lu Z W, Li Y, et al. Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror[J]. Applied Physics B, 2010, 98(2/3): 391-395.
    [52]
    Gao Yue, Wang Yanjie, Chan A, et al. High average power diode pumped solid state laser[J]. Laser Physics Letters, 2017, 14: 035803. doi: 10.1088/1612-202X/aa5c20
    [53]
    Gyger F, Liu Junqiu, Yang Fan, et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides[J]. Physical Review Letters, 2020, 124: 013902. doi: 10.1103/PhysRevLett.124.013902
    [54]
    Garmire E. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics, 2017, 19: 011003. doi: 10.1088/1367-2630/aa5447
    [55]
    Garmire E. Stimulated Brillouin review: invented 50 years ago and applied today[J]. International Journal of Optics, 2018, 2018: 2459501.
    [56]
    Neshev D, Velchev I, Majewski W A, et al. SBS pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B, 1999, 68(4): 671-675. doi: 10.1007/s003400050684
    [57]
    Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1907-1915. doi: 10.1109/3.301654
    [58]
    Park H, Lim C, Yoshida H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 2006, 45(6A): 5073-5075.
    [59]
    Hasi Wuliji, Lü Zhiwei, He Weiming, et al. Study on Brillouin amplification in different liquid media[J]. Acta Physica Sinica, 2005, 54(2): 742-748. doi: 10.3321/j.issn:1000-3290.2005.02.042
    [60]
    Wang Yulei, Lv Zhiwei, Guo Qi, et al. A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate[J]. Chinese Optics Letters, 2010, 8(11): 1064-1066. doi: 10.3788/COL20100811.1064
    [61]
    Wang Hongli. Research on pulsed compression technologies of kHz sub-nanosecond laser based on stimulated Brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2019
    [62]
    Li Yong. Investigation on compensate phase aberration of repetition laser by SBS-PCM[D]. Harbin: Harbin Institute of Technology, 2008
    [63]
    Yoshida H, Nakatsuka M. High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials[C]//Proceedings of 2005 Pacific Rim Conference on Lasers & Electro-Optics. IEEE, 2005: 1166-1167.
    [64]
    Beak D H, Yoon J W, Shin J S, et al. Restoration of high spatial frequency at the image formed by stimulated Brillouin scattering with a prepulse[J]. Applied Physics Letters, 2008, 93: 231113. doi: 10.1063/1.3042101
    [65]
    Kong Hongjin, Beak D H, Lee D W, et al. Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection[J]. Optics Letters, 2005, 30(24): 3401-3403. doi: 10.1364/OL.30.003401
    [66]
    Rockwell D A. A review of phase-conjugate solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 1124-1140. doi: 10.1109/3.236
    [67]
    Wang V, Giuliano C R. Correction of phase aberrations via stimulated Brillouin scattering[J]. Optics Letters, 1978, 2(1): 4-6. doi: 10.1364/OL.2.000004
    [68]
    Kir'yanov Y F, Kochemasov G G, Maslov N V, et al. Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams by stimulated Brillouin scattering[J]. Quantum Electronics, 1998, 28(1): 58-61. doi: 10.1070/QE1998v028n01ABEH001124
    [69]
    Andreev N F, Khazanov E A, Pasmanik G A. Applications of Brillouin cells to high repetition rate solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1992, 28(1): 330-341. doi: 10.1109/3.119532
    [70]
    Andreev N, Kulagin O P, Palashov O V, et al. SBS of repetitively pulsed radiation and possibility of increasing the pump average power[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion (ICF). 1995: 476-493.
    [71]
    Amnon Y. Phase conjugate optics and real-time holography[J]. IEEE Journal of Quantum Electronics., 1978, 14(9): 650-660. doi: 10.1109/JQE.1978.1069870
    [72]
    Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 2018, 75: 626-645. doi: 10.1016/j.optmat.2017.10.035
    [73]
    Damzen M J, Vlad V I, Babin V, et al. Stimulated Brillouin scattering: fundamentals and applications[M]. Bristol: IOP Publishing Ltd, 2003.
    [74]
    Boyd R W. Nonlinear optics[M]. San Diego, CA: Academic Press, 2020.
    [75]
    Hasi W L J, Lu Z W, Li Q et al. Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium[J]. Laser and Particle Beams, 2007, 25(2): 207-210. doi: 10.1017/S026303460700002X
    [76]
    Schiemann S, Ubachs W, Hogervorst W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 1997, 33(3): 358-366. doi: 10.1109/3.556004
    [77]
    Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 1997, 36(16): 3739-3744. doi: 10.1364/AO.36.003739
    [78]
    Lu Z W, Hasi W L J, Gong H P, et al. Generation of flat-top waveform by double optical limiting based on stimulated Brillouin scattering[J]. Optics Express, 2006, 14(12): 5497-5501. doi: 10.1364/OE.14.005497
    [79]
    Boyd R W, Rza̧ewski K, Narum P. Noise initiation of stimulated Brillouin scattering[J]. Physical Review A, 1990, 42(9): 5514-5521. doi: 10.1103/PhysRevA.42.5514
    [80]
    Wang Y L, Lu Z W, Li Y, et al. Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering[J]. Applied Physics B, 2010, 99(1/2): 257-261.
    [81]
    Hon D T. Applications of wavefront reversal by stimulated Brillouin scattering[J]. Optical Engineering, 1982, 21: 212252.
    [82]
    Kong Hongjin, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 2005, 86: 051111. doi: 10.1063/1.1857088
    [83]
    Wang Yulei, Lu Zhiwei, Lin Dianyang, et al. The performance of stimulated Brillouin scattering pulse improved by a prepulse seed[C]//Proceedings of 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser Technology Optoelectronics Technology (ASOT). IEEE, 2010: 157-159.
    [84]
    Wang Y L, Lu Z W, He W M, et al. A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies[J]. Laser and Particle Beams, 2009, 27(2): 297-302. doi: 10.1017/S026303460900038X
    [85]
    Jaberi M, Farahbod A H, Soleimani H R. Spectral behavior of amplified back-scattered Stokes pulse in two-cell phase conjugating mirror[J]. Optics Communications, 2015, 335: 7-15. doi: 10.1016/j.optcom.2014.08.066
    [86]
    Kong Hongjin, Park S, Cha S, et al. Current status of the development of the Kumgang laser[J]. Optical Materials Express, 2014, 4(12): 2551-2558. doi: 10.1364/OME.4.002551
    [87]
    Kiriyama H, Yamakawa K, Nagai T, et al. 360-W average power operation with a single-stage diode-pumped Nd: YAG amplifier at a 1-kHz repetition rate[J]. Optics Letters, 2003, 28(18): 1671-1673. doi: 10.1364/OL.28.001671
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1245) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return