Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser and Particle Beams, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316
Citation: Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser and Particle Beams, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316

Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses

doi: 10.11884/HPLPB202133.210316
Funds:  supported by National Natural Science Foundation of China (61974116)
More Information
  • Author Bio:

    Sun Yi, 908065469@qq.com

  • Received Date: 2021-07-24
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-10-22
  • Publish Date: 2021-10-15
  • A two-dimensional electrothermal model of CMOS NAND gate is established by Sentaurus-TCAD, and the upset and damage effects and mechanisms of CMOS NAND gate are studied with the injection of electromagnetic pulse. The results show that under EMP injection, the output voltage and internal peak temperature of the device show a periodic “decline-rise”. After the EMP is removed, the output voltage stays at an abnormal value, the PMOS source current increases, the temperature keeps rising, and finally burn-out occurs in the PMOS source, due to the latch-up effect inside the device. As the pulse-width increases, the damage power threshold decreases and the damage energy threshold increases. The relationship between the pulse-width τ, the damage power threshold P and the damage energy threshold E is obtained by data fitting. The results can be used to evaluate the damage effect of EMP and provide guidance for device-level EMP anti-damage reinforcement design.
  • loading
  • [1]
    Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21. doi: 10.1016/j.sse.2009.09.006
    [2]
    Iliadis A A, Kim K. Theoretical foundation for upsets in CMOS circuit due to high-power electromagnetic interference[J]. IEEE Trans Device Mater Reliab, 2010, 10(3): 347-352. doi: 10.1109/TDMR.2010.2050692
    [3]
    Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse[J]. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4]
    Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Prog Electromagn Res, 2008, 87: 313-330. doi: 10.2528/PIER08100408
    [5]
    Mansson D, Thottappillil R, Backstrom M, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 434-437.
    [6]
    You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 108501. doi: 10.7498/aps.61.108501
    [7]
    Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwave: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [8]
    Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-387. doi: 10.1109/TEMC.2004.831842
    [9]
    Vault W L. The damage susceptibility of integrated circuits to a simulated IEMP transient[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 40-47. doi: 10.1109/TNS.1973.4327371
    [10]
    Kim K, Iliadis A A. Granatstein V L. Effects of microwave interference on the operational parameters of n-channel enhancement mode MOSFET devices in CMOS integrated circuits[J]. Solid-State Electronics, 2004, 48(10/11): 1795-1799. doi: 10.1016/j.sse.2004.05.015
    [11]
    Kim K, Iliadis A A. Critical upsets of CMOS inverters in static operation due to high-power microwave interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(4): 876-885. doi: 10.1109/TEMC.2007.908820
    [12]
    Yu X H, Chai C C, Ren X R, et al. Temperature dependence of latch-up effects in CMOS inverter induced by high power microwave[J]. J Semicond, 2014, 35(8): 115-120.
    [13]
    Yu X H, Chai C C, Liu Y, et al. Modeling and understanding of the frequency dependent HPM upset susceptibility of the CMOS inverter[J]. China Inform Sci, 2015, 58(8): 1-11.
    [14]
    Yu X H, Chai C C, Qiao L P, et al. Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter[J]. J Semicond, 2015, 36(5): 66-71.
    [15]
    2004 ISE-TCAD Dessis simulation user’s manual[M]. Zurich: Integrated Systems Engineering Corp, 2004.
    [16]
    Donoval D, Vrbicky A, Marek J, et al. Evaluation of the ruggedness of power DMOS transistor from electro-thermal simulation of UIS behavior[J]. Solid-State Electronics, 2008, 52(6): 892-898.
    [17]
    TEXAS INSTRUMENTS. SN74LVC1G00 Single 2-input positive-NAND gate [EB/OL]. https://www.ti.com/cn/lit/d s/symlink/sn74lvc1g00.pdf?ts=1630386223722
    [18]
    Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Transactions on Nuclear Science, 1970, 17(6): 364-372.
    [19]
    Brown W D. Semiconductor device degradation by high amplitude current pulses[J]. IEEE Transactions on Nuclear Science, 1972, 19(6): 68-75.
    [20]
    Jenkins C R, Durgin D L. EMP susceptibility of integrated circuits[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2494-2499.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (920) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return