Yang Jinwen, Yi Tao, Li Tingshuai, et al. Electromagnetic pulse characteristic in process of laser shooting[J]. High Power Laser and Particle Beams, 2015, 27: 103224. doi: 10.11884/HPLPB201527.103224
Citation: Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser and Particle Beams, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316

Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses

doi: 10.11884/HPLPB202133.210316
Funds:  supported by National Natural Science Foundation of China (61974116)
More Information
  • Author Bio:

    Sun Yi, 908065469@qq.com

  • Received Date: 2021-07-24
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-10-22
  • Publish Date: 2021-10-15
  • A two-dimensional electrothermal model of CMOS NAND gate is established by Sentaurus-TCAD, and the upset and damage effects and mechanisms of CMOS NAND gate are studied with the injection of electromagnetic pulse. The results show that under EMP injection, the output voltage and internal peak temperature of the device show a periodic “decline-rise”. After the EMP is removed, the output voltage stays at an abnormal value, the PMOS source current increases, the temperature keeps rising, and finally burn-out occurs in the PMOS source, due to the latch-up effect inside the device. As the pulse-width increases, the damage power threshold decreases and the damage energy threshold increases. The relationship between the pulse-width τ, the damage power threshold P and the damage energy threshold E is obtained by data fitting. The results can be used to evaluate the damage effect of EMP and provide guidance for device-level EMP anti-damage reinforcement design.
  • [1]
    Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21. doi: 10.1016/j.sse.2009.09.006
    [2]
    Iliadis A A, Kim K. Theoretical foundation for upsets in CMOS circuit due to high-power electromagnetic interference[J]. IEEE Trans Device Mater Reliab, 2010, 10(3): 347-352. doi: 10.1109/TDMR.2010.2050692
    [3]
    Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse[J]. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4]
    Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Prog Electromagn Res, 2008, 87: 313-330. doi: 10.2528/PIER08100408
    [5]
    Mansson D, Thottappillil R, Backstrom M, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 434-437.
    [6]
    You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 108501. doi: 10.7498/aps.61.108501
    [7]
    Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwave: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [8]
    Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-387. doi: 10.1109/TEMC.2004.831842
    [9]
    Vault W L. The damage susceptibility of integrated circuits to a simulated IEMP transient[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 40-47. doi: 10.1109/TNS.1973.4327371
    [10]
    Kim K, Iliadis A A. Granatstein V L. Effects of microwave interference on the operational parameters of n-channel enhancement mode MOSFET devices in CMOS integrated circuits[J]. Solid-State Electronics, 2004, 48(10/11): 1795-1799. doi: 10.1016/j.sse.2004.05.015
    [11]
    Kim K, Iliadis A A. Critical upsets of CMOS inverters in static operation due to high-power microwave interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(4): 876-885. doi: 10.1109/TEMC.2007.908820
    [12]
    Yu X H, Chai C C, Ren X R, et al. Temperature dependence of latch-up effects in CMOS inverter induced by high power microwave[J]. J Semicond, 2014, 35(8): 115-120.
    [13]
    Yu X H, Chai C C, Liu Y, et al. Modeling and understanding of the frequency dependent HPM upset susceptibility of the CMOS inverter[J]. China Inform Sci, 2015, 58(8): 1-11.
    [14]
    Yu X H, Chai C C, Qiao L P, et al. Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter[J]. J Semicond, 2015, 36(5): 66-71.
    [15]
    2004 ISE-TCAD Dessis simulation user’s manual[M]. Zurich: Integrated Systems Engineering Corp, 2004.
    [16]
    Donoval D, Vrbicky A, Marek J, et al. Evaluation of the ruggedness of power DMOS transistor from electro-thermal simulation of UIS behavior[J]. Solid-State Electronics, 2008, 52(6): 892-898.
    [17]
    TEXAS INSTRUMENTS. SN74LVC1G00 Single 2-input positive-NAND gate [EB/OL]. https://www.ti.com/cn/lit/d s/symlink/sn74lvc1g00.pdf?ts=1630386223722
    [18]
    Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Transactions on Nuclear Science, 1970, 17(6): 364-372.
    [19]
    Brown W D. Semiconductor device degradation by high amplitude current pulses[J]. IEEE Transactions on Nuclear Science, 1972, 19(6): 68-75.
    [20]
    Jenkins C R, Durgin D L. EMP susceptibility of integrated circuits[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2494-2499.
  • Relative Articles

    [1]Fu Bowen, Zhang Qinnan, Tian Yong, Tian Jindong. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34(3): 031018. doi: 10.11884/HPLPB202234.210271
    [2]Zhang Rongwei, Li Ping, Zhang Yonghua. Simulation study of synchronization pulsed-jamming on frequency-hopping communication system[J]. High Power Laser and Particle Beams, 2018, 30(9): 093202. doi: 10.11884/HPLPB201830.170534
    [3]Jiang Zhanxing, Zhao Guangyi, Zhang Xiaoqiang, Zeng Hongkai, Zhou Lin, Wang Zhen. Structural optimization of multi-gap gas switch with corona discharge for voltage balance[J]. High Power Laser and Particle Beams, 2017, 29(07): 075003. doi: 10.11884/HPLPB201729.170005
    [4]Jiang Zhanxing, Wang Zhen, Zhou Lin. Multi-gap gas switch for LTD stages[J]. High Power Laser and Particle Beams, 2017, 29(02): 025007. doi: 10.11884/HPLPB201729.160496
    [5]Lin Lingshu, Yuan Weiqun, Zhao Ying, Wang Zhizeng, Yan Ping. Scaling method on electromagnetic railgun[J]. High Power Laser and Particle Beams, 2016, 28(01): 015007. doi: 10.11884/HPLPB201628.015007
    [6]Gao Yang, Li Junru. Cooperative multi-physics simulation on self-heating effect of capacitive RF MEMS switch[J]. High Power Laser and Particle Beams, 2016, 28(06): 064108. doi: 10.11884/HPLPB201628.064108
    [7]Li Yong, Xie Haiyan, Yang Zhiqiang, Xuan Chun, Xia Hongfu. Response of metal-oxide -semiconductor field effect transistor to high-power microwaves[J]. High Power Laser and Particle Beams, 2015, 27(10): 103242. doi: 10.11884/HPLPB201527.103242
    [8]Xu Ke, Zeng Hongzheng, Chen Xing. Analysis of avalanche breakdown within Schottky diode based on multi-physics simulation[J]. High Power Laser and Particle Beams, 2015, 27(10): 103213. doi: 10.11884/HPLPB201527.103213
    [9]Xu Ke, Chen Xing, Wang Hao. Multi-physics simulation for analyzing high power microwave electromagnetic effect of electromagnetic system[J]. High Power Laser and Particle Beams, 2014, 26(07): 073220. doi: 10.11884/HPLPB201426.073220
    [10]Wang Peng, Li Mingjia, Kang Qiang, Tan Jie, Luo Min, Wang Ganping, Yang Xiaoliang. Simulation and experimental research on L-type pulse forming network[J]. High Power Laser and Particle Beams, 2013, 25(09): 2461-2465. doi: 10.3788/HPLPB20132509.2461
    [11]sun peng, lei bin, li zhiyuan, guo chunlong. Finite element analysis on 3-D electromagnetic field of electromagnetic launching composite intercepting projectile[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [12]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]zhang yundong, cai yuanxue, yang chaobo, dang boshi, wang jinfang, yuan ping. High sensitivity slow light interferometer[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [14]zhang dong-dong, yan ping, wang jue. Simulation on a magnetic pulse compression system[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [15]cai zheng-ping, cao xiang-jun, wang yong. Simulation study on high power solid-state modulator[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [16]zhao wen-bin, zhang guan-jun, yan zhang. Research progress on flashover phenomena across semiconducting materials under high electric field[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [17]huang zong-sheng, qin shi-qiao, wang xing-shu. Simulation of laser spot parameters measured with detector array[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]li wen-yu, wang jin-bao, cheng xiang-ai, lu qi-sheng. New analysis on laser-induced damage mechanism of array CCD device[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [19]he yong, chen de-huai, lin fu-chang, li jin, . Simulation and measurement of electromagnetic interference in a pulsed supply of high power laser[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(5)

    1. 李建林,雷广智,白杨,白冰,孙延笑. 电光-MoSe_2主被动双调Q 946 nm全固态激光器. 光子学报. 2018(05): 15-22 .
    2. 汪峰,田丰,武风波. 灯泵Cr, Nd:GSGG晶体热效应的有限元研究. 实验室研究与探索. 2018(11): 28-31 .
    3. 屈鹏飞,王石语,过振,蔡德芳,李兵斌. 热效应对激光器光束质量的自适应调整技术. 光学学报. 2017(05): 156-163 .
    4. 龚梦帆,肖光宗,于旭东,张斌. 一体化Y型腔正交偏振氦氖激光器的温度场仿真与实验. 红外与激光工程. 2016(05): 59-65 .
    5. 罗宽,王菲,车英,张国玉. 偏振变换法测量固体激光器的动态热焦距. 红外与激光工程. 2016(10): 239-243 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 78.3 %META: 78.3 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %其他: 0.3 %其他: 0.3 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.7 %上海: 0.7 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 21.4 %北京: 21.4 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.9 %天津: 0.9 %宁波: 0.1 %宁波: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %广州: 0.4 %广州: 0.4 %张家口: 1.2 %张家口: 1.2 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %桂林: 0.1 %桂林: 0.1 %武汉: 0.3 %武汉: 0.3 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.8 %漯河: 1.8 %焦作: 0.2 %焦作: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 43.0 %西宁: 43.0 %西安: 0.7 %西安: 0.7 %贵阳: 0.1 %贵阳: 0.1 %达尔斯: 0.5 %达尔斯: 0.5 %达州: 0.1 %达州: 0.1 %运城: 0.2 %运城: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %随州: 0.1 %随州: 0.1 %其他其他ChinaIndiaUnited States[]上海中卫中山临汾丹东保定兰州北京十堰南京南宁周口呼和浩特哥伦布嘉兴大连天津宁波宜春宣城常州广州张家口成都扬州普洱杭州桂林武汉洛阳淄博淮安深圳温州湖州漯河焦作石家庄福州秦皇岛绍兴芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安贵阳达尔斯达州运城邯郸郑州鄂州重庆长沙长治随州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1003) PDF downloads(83) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return