Qing Chun, Wu Xiaoqing, Li Xuebin, et al. Forecast upper air optical turbulence based on weather research and forecasting model[J]. High Power Laser and Particle Beams, 2015, 27: 061009. doi: 10.11884/HPLPB201527.061009
Citation: Cui Bo, Zhang Zhimeng, Dai Zenghai, et al. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33: 094004. doi: 10.11884/HPLPB202133.210330

Experimental study of high yield neutron source based on multi reaction channels

doi: 10.11884/HPLPB202133.210330
  • Received Date: 2021-07-30
  • Rev Recd Date: 2021-09-03
  • Available Online: 2021-09-15
  • Publish Date: 2021-09-15
  • The short-pulse neutron source based on ultra-short and ultra-intense laser is an ideal neutron source for ultra-fast neutron detection. For many applications of the novel laser neutron source, the neutron yield now becomes a major limitation. It is proposed here that, based on the Target Normal Sheath Acceleration mechanism (TNSA) and the beam-target reaction scheme, the adoption of composite component target LiD as the neutron converter can be an effective path to enhance the neutron yield. Compared with the traditional LiF converter, which has two typical reaction channels p-Li and d-Li, the use of LiD converter has the advantages on introducing two more reactions channels, i.e., p-D and d-D. Therefore, more reaction channels are expected to be beneficial for increasing the neutron yield. It is experimentally demonstrated that by using LiD converter, an enhancement of 2−3 folds of neutron yield is achieved compared with the LiF converter. As a result, a neutron beam with the highest yield of 5.2×108 sr−1 with a forward beamed distribution is well obtained. The contribution of multi reaction channels is also identified, indicating the enhancement of neutron yield mainly comes from the p-D reaction.
  • [1]
    Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [2]
    Pomerantz I, McCary E, Meadows A R, et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 2014, 113: 184801. doi: 10.1103/PhysRevLett.113.184801
    [3]
    Roth M, Jung D, Falk K, et al. Physics: a tabletop neutron source[J]. Nature, 2013, 494: 044802.
    [4]
    Jung D, Falk K, Guler N, et al. Characterization of a novel, short pulse laser-driven neutron source[J]. Physics of Plasmas, 2013, 20: 056706. doi: 10.1063/1.4804640
    [5]
    Favalli A, Aymond F, Bridgewater J S, et al. Nuclear material detection by one-short-pulse-laser-driven neutron source[C]//IEEE Nuclear Symposium. Seattle, 2015.
    [6]
    Guler N, Volegov P, Favalli A, et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility[J]. Journal of Applied Physics, 2016, 120: 154901. doi: 10.1063/1.4964248
    [7]
    Fernandez J C, Barnes C W, Mocko M J, et al. Sensitivity analysis and requirements for temporally and spatially resolved thermometry using neutron resonance spectroscopy[R]. LA-UR-18-20686, 2018.
    [8]
    Lancaster K L, Karsch S, Habara H, et al. Characterization of 7Li(p, n)7Be neutron yields from laser produced ion beams for fast neutron radiography[J]. Physics of Plasmas, 2004, 11(7): 3404-3408. doi: 10.1063/1.1756911
    [9]
    Kleinschmidt A, Bagnoud V, Deppert O, et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX[J]. Physics of Plasmas, 2018, 25: 053101. doi: 10.1063/1.5006613
    [10]
    吴学志, 寿寅任, 弓正, 等. 激光离子加速研究与应用展望[J]. 强激光与粒子束, 2020, 32:092002. (Wu Xuezhi, Shou Yinren, Gong Zheng, et al. Laser-driven ion acceleration: development and potential applications[J]. High Power Laser and Particle Beams, 2020, 32: 092002
    [11]
    Zulick C, Dollar F, Chvykov V, et al. Energetic neutron beams generated from femtosecond laser plasma interactions[J]. Applied Physics Letters, 2013, 102: 124101. doi: 10.1063/1.4795723
    [12]
    Willingale L, Petrov G M, Maksimchuk A, et al. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production[J]. Physics of Plasmas, 2011, 18: 083106. doi: 10.1063/1.3624769
    [13]
    崔波, 贺书凯, 刘红杰, 等. 液体闪烁体探测器测量皮秒激光脉冲中子源能谱[J]. 强激光与粒子束, 2016, 28:124005. (Cui Bo, He Shukai, Liu Hongjie, et al. Neutron spectrum measurement for picosecond laser pulse neutron source experiment with liquid scintillator detector[J]. High Power Laser and Particle Beams, 2016, 28: 124005 doi: 10.11884/HPLPB201628.160414
    [14]
    Olsher R H, McLean T D, Mallett M W, et al. High-energy response of passive dosemeters in use at LANL[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 326-332.
    [15]
    Bubble Technology Industries Inc[EB/OL]. http://bubbletech.ca/.
    [16]
    [17]
    Petrov G M, Higginson D P, Davis J, et al. Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers[J]. Physics of Plasmas, 2012, 19: 093106. doi: 10.1063/1.4751460
    [18]
    Cui Bo, Fang Zhiheng, Dai Zenghai, et al. Nuclear diagnosis of the fuel areal density for direct-drive deuterium fuel implosion at the Shenguang-II Upgrade laser facility[J]. Laser and Particle Beams, 2018, 36(4): 494-501. doi: 10.1017/S026303461800054X
  • Relative Articles

    [1]Xu Rui, Wang Bangji, Liu Qingxiang, Wang Dong, Weng Hong. Position process control system of miniature brushless DC motor[J]. High Power Laser and Particle Beams, 2022, 34(4): 043001. doi: 10.11884/HPLPB202234.210162
    [2]Zhou Lei, Wang Bangji, Liu Qingxiang, Li Xiangqiang, Zhang Jianqiong. Multi-axis DC motor controller for phased array antenna applications implemented on FPGA[J]. High Power Laser and Particle Beams, 2018, 30(1): 013001. doi: 10.11884/HPLPB201830.170188
    [3]Zhang Hongwei, Liu Chaoyang, Yu Zhihua, Liu Honghua. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30(7): 073008. doi: 10.11884/HPLPB201830.170531
    [4]Chen Gang, Wen Chunmei, Li Yuhui. Calibration and installation of a permanent magnet phase shifter based on nonlinear parameter estimation[J]. High Power Laser and Particle Beams, 2018, 30(12): 125106. doi: 10.11884/HPLPB201830.180205
    [5]Huang Zijiang, He Hengxiang, Jiang Zhongming, Liu Pan, Zhang Qiang, Huang Kai. Design of high-precision timing control system in combined pulse laser[J]. High Power Laser and Particle Beams, 2016, 28(12): 125005. doi: 10.11884/HPLPB201628.160157
    [6]Wan Rongxin, Li Xiangqiang, Liu Qingxiang, Wang Bangji, Zhou Lei. Design of IP core for DC micromotor controller based on FPGA[J]. High Power Laser and Particle Beams, 2016, 28(03): 033011. doi: 10.11884/HPLPB201628.033011
    [7]Deng Guangjian, Huang Wenhua, Li Jiawei, Shao Hao, Ba Tao, Zhang Zhiqiang. High power ferrite phase shifter based on structure of waveguide in parallel[J]. High Power Laser and Particle Beams, 2016, 28(08): 083006. doi: 10.11884/HPLPB201628.151095
    [8]Yan Fabao, Su Yanrui, Yang Hong, Liu Jianxin. High-precision optical platform focusing control system[J]. High Power Laser and Particle Beams, 2015, 27(09): 091009. doi: 10.11884/HPLPB201527.091009
    [9]Zhang Dewei, Li Wenchao, Zhou Dongfang, Wang Yongfei, Deng Hailin. Design of Ka-band reflection-type analog electrically controlled phase shifter[J]. High Power Laser and Particle Beams, 2015, 27(05): 053001. doi: 10.11884/HPLPB201527.053001
    [10]Li Guohui, Yang Yuan, He Zhongwu, Xiang Rujian, Wu Jing, Xu Honglai, Yan Hong, Lu Fei, Hu Ping. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26(03): 031009. doi: 10.3788/HPLPB201426.031009
    [11]Ma Jun, Wang Honggang, Du Guangxing, Qian Baoliang. Preliminary design of TM11-TE10 mode converter in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063004. doi: 10.11884/HPLPB201426.063004
    [12]Zhou Yifei, Liu Qingxiang, Li Xiangqiang, Wang Bangji, Zhou Lei, Li Wei. Simulation of helical antenna stepper motor control system and optimization of running curve[J]. High Power Laser and Particle Beams, 2014, 26(06): 063020. doi: 10.11884/HPLPB201426.063020
    [13]Du Kai, Li Guo, Tong Weichao, Huang Yanhua, Tang Yongjian. Accuracy control of capsule micro holes in fast ignition based on single point diamond turning[J]. High Power Laser and Particle Beams, 2013, 25(12): 3225-3229. doi: 3225
    [14]Su Rongtao, Zhou Pu, Wang Xiaolin, Han Kai, Xu Xiaojun. 光纤激光相干合成高速高精度相位控制器[J]. High Power Laser and Particle Beams, 2012, 24(06): 1290-1294. doi: 10.3788/HPLPB20122406.1290
    [15]lu hui, zhang lijun, zheng zhanqi, zhang yiheng, leng yongqing, liao xianhua. Fiber-based vector-sum microwave photonic phase shifter[J]. High Power Laser and Particle Beams, 2011, 23(12): 12-13.
    [16]li xiao, sun hong, qiu yingwei, shen sirong, tang jingyu. Digital RF phase control loop at rapid cycling synchrotron of China spallation neutron source[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [17]wang bangji, liu qingxiang, zhang zhengquan, li xiangqiang, zhang jianqiong. Design of motor control system for mechanical phased array antenna[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [18]zhou lei, liu qingxiang, li xiangqiang, wang bangji, yu yi, zhang jianqiong, zhang yanrong, li hanbing. Design of stepping motor control IP core for array antenna successive scanning[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 77.1 %META: 77.1 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 1.1 %其他: 1.1 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %European Union: 0.2 %European Union: 0.2 %France: 0.2 %France: 0.2 %India: 0.1 %India: 0.1 %Malaysia: 0.3 %Malaysia: 0.3 %Russian Federation: 0.1 %Russian Federation: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.6 %United States: 0.6 %[]: 1.1 %[]: 1.1 %三明: 0.1 %三明: 0.1 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %兰州: 0.1 %兰州: 0.1 %内江: 0.2 %内江: 0.2 %北京: 10.1 %北京: 10.1 %南京: 0.2 %南京: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.4 %台州: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.2 %哈密: 0.2 %哈尔科夫: 0.5 %哈尔科夫: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %威海: 0.2 %威海: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.2 %宿迁: 0.2 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴黎: 0.2 %巴黎: 0.2 %常州: 0.2 %常州: 0.2 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %成都: 1.5 %成都: 1.5 %扬州: 0.1 %扬州: 0.1 %新乡: 0.7 %新乡: 0.7 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %格兰特县: 0.2 %格兰特县: 0.2 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.8 %湖州: 0.8 %漯河: 0.4 %漯河: 0.4 %澳门: 0.1 %澳门: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 39.3 %西宁: 39.3 %西安: 0.4 %西安: 0.4 %西雅图: 0.1 %西雅图: 0.1 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.1 %郑州: 2.1 %都柏林: 0.2 %都柏林: 0.2 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.3 %铜陵: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %其他其他Central DistrictChinaEuropean UnionFranceIndiaMalaysiaRussian FederationUnited KingdomUnited States[]三明上海中山临汾丹东丽水伊利诺伊州兰州内江北京南京台北台州呼和浩特咸阳哈密哈尔科夫哥伦布嘉兴大连天津威海安康宣城宿迁崇左巴中巴黎常州平顶山广州张家口张家界成都扬州新乡晋城普洱杭州格兰特县桃园武汉沈阳淮安深圳温州湖州漯河澳门玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图贵港贵阳运城连云港邯郸郑州都柏林重庆铜陵长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (1146) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return