Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332
Citation: Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002. doi: 10.11884/HPLPB202133.210332

Sub-microsecond high voltage pulse power supply based on magnetic isolated driving

doi: 10.11884/HPLPB202133.210332
  • Received Date: 2021-07-30
  • Accepted Date: 2021-11-03
  • Rev Recd Date: 2021-10-29
  • Available Online: 2021-11-08
  • Publish Date: 2021-11-15
  • To meet the demand of irreversible electroporation for nanosecond pulse power supply, this paper proposes a sub-microsecond high voltage pulse power supply with high repetition frequency, which is based on positive Marx circuit and has ns rising time. The pulse power supply uses optical fiber to transmit signals. After the driver chip amplifies the signal, the magnetic core transformer is used to transmit the drive signal to the MOSFET. The magnetic core transformer provides magnetic isolation to the circuit, so that the drive circuit will not be affected by the high voltage output and the withstand voltage level of the circuit is improved. The design of drive circuit is simple, and it requires fewer components. It provides negative bias voltage so that the switch can be reliably turned off and can effectively improve the electromagnetic compatibility. A 16-stage prototype has been built. The experiment showed that 10 kV square pulses were obtained over 10 kΩ resistive load when the input voltage was 630 V. Its minimum pulse width is 300 ns, and the frequency is adjustable from 1 Hz to 10 kHz. The pulse power supply is compact, and can flexibly adjust the voltage amplitude, pulse width and frequency. The influence of the magnetic material and number of turns of the windings of the magnetic core are also studied. The increase of turns ratio will affect the signal pulse width. Under certain conditions, the difference of single turn inductance and magnetic core material have little effect on signal pulse width.
  • loading
  • [1]
    卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学:物理学、力学、天文学, 2011, 41(7):801-815. (Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA Phys, Mech & Astron, 2011, 41(7): 801-815
    [2]
    Miklavčič D, Sersa G, Brecelj E, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors[J]. Medical & Biological Engineering & Computing, 2012, 50(12): 1213-1225.
    [3]
    Magori Y, Ohta S, Kagetama T, et al. In vivo experiment of applying nanosecond pulsed electric fields on solid tumor[C]//IEEE Pulsed Power Conference. 2011: 1253-1257.
    [4]
    姚陈果, 宁郡怡, 刘红梅, 等. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1):115-124. (Yao Chenguo, Ning Junyi, Liu Hongmei, et al. Study of electroporation effect of different size tumor cells targeted by micro-nanosecond pulsed electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124
    [5]
    Beebe S J, Fox P M, Rec L J, et al. Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells[J]. Faseb Journal, 2003, 17(9): 1493-1495.
    [6]
    Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics—New applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300. doi: 10.1109/TPS.2002.1003873
    [7]
    Schoenbach K H, Joshi R P. Ultrashort electrical pulses open a new gateway into biological cells[J]. Proceedings of the IEEE, 2004, 92(7): 1122-1137. doi: 10.1109/JPROC.2004.829009
    [8]
    Schoenbach K H, Nuccitelli R, Beebe S J. ZAP: Extreme voltage could be a surprisingly delicate tool in the fight against cancer[J]. IEEE Spectrum, 2006, 43(8): 20-26.
    [9]
    唐靖超, 殷海荣, 马佳路, 等. 纳秒电脉冲作用下KcsA-膜蛋白体系电穿孔的分子动力学模拟[J]. 真空电子技术, 2019, 4(1):14-20. (Tang Jingchao, Yin Hairong, Ma Jialu, et al. Electroporation of KcsA membrane protein system under nanosecond pulsed electric field: A molecular dynamics simulation[J]. Vacuum Electronics, 2019, 4(1): 14-20
    [10]
    赵君科, 夏连胜, 任先文, 等. 陡前沿纳秒脉冲电源的研制[J]. 高电压技术, 1999(2):44-46. (Zhao Junke, Xia Liansheng, Ren Xianwen, et al. Research on pulsed power source with nanoseconds risetime[J]. High Voltage Engineering, 1999(2): 44-46 doi: 10.3969/j.issn.1003-6520.1999.02.016
    [11]
    周启明, 孙庚晨, 罗学金, 等. 100kV高压ns陡脉冲源的研制[J]. 高电压技术, 2002, 28(6):37-39. (Zhou Qiming, Sun Gengchen, Luo Xuejin, et al. Development of a nanosecond high voltage pulse power of 100kV and 50Ω loading[J]. High Voltage Engineering, 2002, 28(6): 37-39 doi: 10.3969/j.issn.1003-6520.2002.06.017
    [12]
    李玺钦, 丁明军, 吴红光, 等. 低抖动快前沿重复频率高压脉冲触发源研制[J]. 强激光与粒子束, 2014, 26:095001. (Li Xiqin, Ding Mingjun, Wu Hongguang, et al. Development of low jitter fast fall time and repetitive high voltage pulsed trigger[J]. High Power Laser and Particle Beams, 2014, 26: 095001 doi: 10.11884/HPLPB201426.095001
    [13]
    Liu Y, Fan R, Zhang X, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [14]
    嵇保健, 王若冰, 洪峰, 等. 基于Marx电路的纳秒级高压脉冲电源设计[J]. 高电压技术, 2016, 42(12):3758-3762. (Ji Baojian, Wang Ruobing, Hong Feng, et al. Design of nanosecond high-voltage pulsed power source based on Marx generator[J]. High Voltage Engineering, 2016, 42(12): 3758-3762
    [15]
    Richard L C, Palo A. High voltage pulsed power supply using solid state switches with voltage cell isolation: United States, US7550876B2[P]. 2009-06-30.
    [16]
    Wang Jianjing, Chung S H. Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6672-6685.
    [17]
    纪圣儒, 朱志明, 周雪珍, 等. MOSFET隔离型高速驱动电路[J]. 电焊机, 2007, 37(5):6-9,77. (Ji Shengru, Zhu Zhiming, Zhou Xuezhen, et al. Electrical-isolated high-speed MOSFET driver circuit[J]. Electric Welding Machine, 2007, 37(5): 6-9,77 doi: 10.3969/j.issn.1001-2303.2007.05.002
    [18]
    徐建清, 高勇, 杨媛, 等. SiC MOSFET驱动电路设计及特性分析[J]. 半导体技术, 2020, 45(5):352-358,408. (Xu Jianqing, Gao Yong, Yang Yuan, et al. Driving circuit design and performance analysis for SiC MOSFET[J]. Semiconductor Devices, 2020, 45(5): 352-358,408
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (1077) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return