Citation: | Li Yujia, Wu Ke’nan, Jin Yuqi, et al. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371 |
[1] |
王欢, 曹振松, 汪六三, 等. 水汽分子对CO2谱线加宽的影响[J]. 强激光与粒子束, 2010, 22(9):1982-1986. (Wang Huan, Cao Zhensong, Wang Liusan, et al. Effect of water vapor on spectrum broadening of CO2[J]. High Power Laser and Particle Beams, 2010, 22(9): 1982-1986 doi: 10.3788/HPLPB20102209.1982
|
[2] |
Geldern R V, Nowak M E, Zimmer M, et al. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring[J]. Analytical Chemisitry, 2014, 86(24): 12191-12198. doi: 10.1021/ac5031732
|
[3] |
邬承就, 袁怿谦, 曹百灵, 等. 1.315 μm附近CO2的高分辨率吸收光谱[J]. 强激光与粒子束, 2003, 15(1):9-12. (Wu Chengjiu, Yuan Yiqian, Cao Bailing, et al. High resolution absorption spectra of CO2 near 1.315 μm[J]. High Power Laser and Particle Beams, 2003, 15(1): 9-12
|
[4] |
孟范江, 郭立红, 杨贵龙, 等. 大功率TEA CO2激光器系统中电磁干扰的抑制[J]. 强激光与粒子束, 2008, 20(2):177-182. (Meng Fanjiang, Guo Lihong, Yang Guilong, et al. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(2): 177-182
|
[5] |
Nelson D, McManus J, Herndon S, et al. New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 μm pulsed quantum cascade laser[J]. Applied Physics B, 2008, 90(2): 301-309. doi: 10.1007/s00340-007-2894-1
|
[6] |
沈满德. 高分辨率中红外温度自适应夜视成像系统[J]. 强激光与粒子束, 2013, 25(5):1144-1146. (Shen Mande. High-resolution midwave infrared temperature-adaptive night-vision imaging system[J]. High Power Laser and Particle Beams, 2013, 25(5): 1144-1146 doi: 10.3788/HPLPB20132505.1144
|
[7] |
Klein P B, Furneaux J E, Henry R L. Laser oscillation at 3.53 μm from Fe2+ in n-InP: Fe[J]. Applied Physics Letters, 1983, 42(8): 638-640. doi: 10.1063/1.94057
|
[8] |
Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. doi: 10.1364/OL.24.001720
|
[9] |
Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient IR Fe: ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 microns[J]. Quantum Electron, 2004, 34(10): 912-914. doi: 10.1070/QE2004v034n10ABEH002789
|
[10] |
Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain-switched lasing of Fe: ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615. doi: 10.1364/OPEX.13.010608
|
[11] |
Mirov S, Fedorov V, Martyshkin D, et al. Mid-IR lasers based on transition metal and rare-earth ion doped crystals[C]//Proc of SPIE. 2015: 94672K.
|
[12] |
Firsov K N, Gavrishchuk E M, Kazantsev S Yu, et al. Increasing the radiation energy of ZnSe: Fe2+ laser at room temperature[J]. Laser Physics Letters, 2014, 11: 085001. doi: 10.1088/1612-2011/11/8/085001
|
[13] |
Li Yingyi, Dai Tongyu, Duan Xiaoming, et al. Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser[J]. Chinese Physics B, 2019, 28(6): 195-198.
|