Li Xin. Laser ray-tracing phenomenal model at far field[J]. High Power Laser and Particle Beams, 2015, 27: 032003. doi: 10.11884/HPLPB201527.032003
Citation: Li Yujia, Wu Ke’nan, Jin Yuqi, et al. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33: 111012. doi: 10.11884/HPLPB202133.210371

Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser

doi: 10.11884/HPLPB202133.210371
  • Received Date: 2021-08-26
  • Rev Recd Date: 2021-10-26
  • Available Online: 2021-11-04
  • Publish Date: 2021-11-15
  • In view of the key bottleneck that Fe2+: ZnSe laser lacks effective high-power pumping source at present, the technical route of using a continuous wave HF chemical laser to pump Fe2+: ZnSe to achieve laser output in 4 μm band is proposed. The feasibility of this technical route is investigated both experimentally and theoretically. The output of a continuous wave HF chemical laser pumped Fe2+: ZnSe laser at watt level is obtained for the first time. The output power is about 1.7 W, the central wavelength is 4.18 μm, and the lasing lasts about 2 s.
  • [1]
    王欢, 曹振松, 汪六三, 等. 水汽分子对CO2谱线加宽的影响[J]. 强激光与粒子束, 2010, 22(9):1982-1986. (Wang Huan, Cao Zhensong, Wang Liusan, et al. Effect of water vapor on spectrum broadening of CO2[J]. High Power Laser and Particle Beams, 2010, 22(9): 1982-1986 doi: 10.3788/HPLPB20102209.1982
    [2]
    Geldern R V, Nowak M E, Zimmer M, et al. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring[J]. Analytical Chemisitry, 2014, 86(24): 12191-12198. doi: 10.1021/ac5031732
    [3]
    邬承就, 袁怿谦, 曹百灵, 等. 1.315 μm附近CO2的高分辨率吸收光谱[J]. 强激光与粒子束, 2003, 15(1):9-12. (Wu Chengjiu, Yuan Yiqian, Cao Bailing, et al. High resolution absorption spectra of CO2 near 1.315 μm[J]. High Power Laser and Particle Beams, 2003, 15(1): 9-12
    [4]
    孟范江, 郭立红, 杨贵龙, 等. 大功率TEA CO2激光器系统中电磁干扰的抑制[J]. 强激光与粒子束, 2008, 20(2):177-182. (Meng Fanjiang, Guo Lihong, Yang Guilong, et al. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(2): 177-182
    [5]
    Nelson D, McManus J, Herndon S, et al. New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 μm pulsed quantum cascade laser[J]. Applied Physics B, 2008, 90(2): 301-309. doi: 10.1007/s00340-007-2894-1
    [6]
    沈满德. 高分辨率中红外温度自适应夜视成像系统[J]. 强激光与粒子束, 2013, 25(5):1144-1146. (Shen Mande. High-resolution midwave infrared temperature-adaptive night-vision imaging system[J]. High Power Laser and Particle Beams, 2013, 25(5): 1144-1146 doi: 10.3788/HPLPB20132505.1144
    [7]
    Klein P B, Furneaux J E, Henry R L. Laser oscillation at 3.53 μm from Fe2+ in n-InP: Fe[J]. Applied Physics Letters, 1983, 42(8): 638-640. doi: 10.1063/1.94057
    [8]
    Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. doi: 10.1364/OL.24.001720
    [9]
    Akimov V A, Voronov A A, Kozlovskii V I, et al. Efficient IR Fe: ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 microns[J]. Quantum Electron, 2004, 34(10): 912-914. doi: 10.1070/QE2004v034n10ABEH002789
    [10]
    Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain-switched lasing of Fe: ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615. doi: 10.1364/OPEX.13.010608
    [11]
    Mirov S, Fedorov V, Martyshkin D, et al. Mid-IR lasers based on transition metal and rare-earth ion doped crystals[C]//Proc of SPIE. 2015: 94672K.
    [12]
    Firsov K N, Gavrishchuk E M, Kazantsev S Yu, et al. Increasing the radiation energy of ZnSe: Fe2+ laser at room temperature[J]. Laser Physics Letters, 2014, 11: 085001. doi: 10.1088/1612-2011/11/8/085001
    [13]
    Li Yingyi, Dai Tongyu, Duan Xiaoming, et al. Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser[J]. Chinese Physics B, 2019, 28(6): 195-198.
  • Relative Articles

    [1]Zhang Tianyang, Huang Tao, Cong Peitian, Luo Weixi, Yin Jiahui, Zhai Rongxiao. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36(11): 115015. doi: 10.11884/HPLPB202436.240291
    [2]Lu Honglin, Wu Xinjie, Zhang Debin, Qu Chengzhi, Zhang Zhongsong, Zhang Yu. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36(2): 025021. doi: 10.11884/HPLPB202436.230171
    [3]Xie Xiangyu, Wang Peng, Deng Ying, Zhou Kainan, Feng Guoying. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35(5): 059002. doi: 10.11884/HPLPB202335.220396
    [4]Rong Fan, Zhong Longquan, Liu Qiang, Yan Liping, Zhao Xiang. Modeling and statistical analysis of distribution parameters of random cable bundles based on image recognition technology[J]. High Power Laser and Particle Beams, 2021, 33(5): 053002. doi: 10.11884/HPLPB202133.210007
    [5]Shen Yi, Zhang Huang, Liu Yi, Wang Wei, Ye Mao, Xia Liansheng, Shi Jinshui, Zhang Linwen, Deng Jianjun. Circuit coupling and decoupling between accelerating units of dielectric wall linear accelerator[J]. High Power Laser and Particle Beams, 2016, 28(04): 045003. doi: 10.11884/HPLPB201628.125003
    [6]Luo Shiwen, Zuo Duluo, Wang Xinbing. Kinetic simulation of discharge excited ArF excimer laser and parameter analysis[J]. High Power Laser and Particle Beams, 2015, 27(08): 081006. doi: 10.11884/HPLPB201527.081006
    [7]Huang Yanhua, Song Chengwei, Zhang Junjie, Sun Tao. Molecular dynamics modelling and simulating of femtosecond laser ablation of polymers[J]. High Power Laser and Particle Beams, 2014, 26(12): 124102. doi: 10.11884/HPLPB201426.124102
    [8]Cui Ding, Su Youbin, Cui Yunjun, Xian Yuqiang, Zhang Wei. Hybrid modeling method based on solid element and shell element in microwave structure[J]. High Power Laser and Particle Beams, 2013, 25(S0): 106-110.
    [9]Hao Qingsong, Ding ZHenjie, Fan Juping, Yu Jianguo, Yuan Xuelin, Pan Yafeng, Hu Long, Fang Xu, Wang Gang, Su Jiancang. Design of primary unit of high repetition frequency pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2479-2482. doi: 10.3788/HPLPB20122410.2479
    [10]Zhang Xianpeng, Zhang Mei, Sheng Liang, Ouyang Xiaoping. Simulation research of neutron scatter camera with five units[J]. High Power Laser and Particle Beams, 2012, 24(10): 2464-2468. doi: 10.3788/HPLPB20122410.2464
    [11]Chen Shaowu, Zhang Jianmin, Yuwen Cuilei, Feng Gang. 中红外高能激光探测单元[J]. High Power Laser and Particle Beams, 2012, 24(06): 1306-1310. doi: 10.3788/HPLPB20122406.1306
    [12]Wang Qingfeng, Liu Qingxiang, Li Xiangqiang, Zhang Zhengquan, Xu Yuancan, Hu Kesong. Double-cell experimental study of linear transformer drivers[J]. High Power Laser and Particle Beams, 2012, 24(04): 789-792. doi: 10.3788/HPLPB20122404.0789
    [13]he dayong, chi yunlong, . Design and multi-cell test of Marx solid-state modulator[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]he dayong, chi yunlong, . Marx solid-stage modulator cell for International Linear Collider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]chen minsun, jiang houman, liu zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [16]yang peng-ling, feng guo-bin, wang qun-shu, yan yan, cheng jian-ping. Design and implement of detecting module for mid-infrared laser power density measurement[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [17]li zhi-hui, ratzinger u. Optimization of room temperature CH-cavity with cell-cavity approximation[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [18]xia ming-he, li hong-tao, yao bin, feng shu-ping, wang yu-juan, meng wei-tao, wei bing, he an, ji ce, tian qing, fu zhen, ding sheng, ren jing, qing yan-ling, xie wei-ping. Investigation of pulse forming line section of pulse power machine[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [19]tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [20]yu hai-jun, shi jin-shui. Dynamics behavior of backstreaming ions[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 程显,夏荣翔,葛国伟,连昊宇,吕彦鹏,陈硕. 基于感应叠加原理的模块化脉冲电源的研制. 高电压技术. 2021(03): 778-785 .
    2. 马剑豪,何映江,余亮,董守龙,姚陈果. 应用于模块化高压纳秒脉冲源的SiC与射频Si基MOSFET瞬态开关特性对比研究. 中国电机工程学报. 2020(06): 1817-1829 .
    3. 吴兆康,陈希有,牟宪民,吴茂鹏. 基于多变压器的双极性Marx电路. 电工电能新技术. 2020(11): 59-65 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 68.7 %META: 68.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 1.7 %上海: 1.7 %东莞: 0.0 %东莞: 0.0 %东营: 0.0 %东营: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %休斯敦: 0.0 %休斯敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兴安盟: 0.1 %兴安盟: 0.1 %北京: 19.1 %北京: 19.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.2 %嘉义: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %布达佩斯: 0.0 %布达佩斯: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.4 %成都: 0.4 %扬州: 0.2 %扬州: 0.2 %文昌: 0.0 %文昌: 0.0 %斯特灵: 0.0 %斯特灵: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.0 %昆明: 0.0 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杜伊斯堡: 0.0 %杜伊斯堡: 0.0 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %海口: 0.0 %海口: 0.0 %深圳: 0.1 %深圳: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %漯河: 0.2 %漯河: 0.2 %瓜达拉哈拉: 0.1 %瓜达拉哈拉: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.3 %苏州: 0.3 %莱芜: 0.2 %莱芜: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 40.9 %西宁: 40.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.0 %长治: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东莞东营中山临汾丹东休斯敦佛山保定兴安盟北京十堰南京博阿努瓦厦门台州合肥吕梁呼和浩特哥伦布嘉义大连天津安康宣城岳阳布达佩斯常州广州张家口惠州成都扬州文昌斯特灵新乡昆明晋城普洱杜伊斯堡杭州武汉沈阳济南海口深圳温州湖州漯河瓜达拉哈拉石家庄秦皇岛绵阳芒廷维尤芝加哥苏州莱芜衢州西宁西安贵阳运城邯郸郑州重庆金华镇江长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (940) PDF downloads(34) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return