Le Wei, Huang Jinglin, Yang Qiang, et al. Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles[J]. High Power Laser and Particle Beams, 2021, 33: 119001. doi: 10.11884/HPLPB202133.210466
Citation: Le Wei, Huang Jinglin, Yang Qiang, et al. Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles[J]. High Power Laser and Particle Beams, 2021, 33: 119001. doi: 10.11884/HPLPB202133.210466

Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles

doi: 10.11884/HPLPB202133.210466
  • Received Date: 2021-10-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-15
  • Publish Date: 2021-11-15
  • Surface-enhanced Raman spectroscopy (SERS) technology has been widely used in viral molecular detection due to its high sensitivity, simple operation and rapid detection. The research of virus detection by Raman technology at home and abroad mainly focuses on the detection of the SERS spectrum of viral nucleic acids and various bases that make up the nucleic acids, and detection of viral proteins is rare. In this paper, the S protein of the new coronavirus (SARS-CoV-2) is used as the detection object, and with the label-free SERS detection method, the ordinary Raman spectra of solid and saturated liquid S protein of the SARS-CoV-2 and the SERS spectra of the low-concentration S protein of SARS-CoV-2 on the substrate of gold nanoparticles with a size of 40 nm are compared. The results show that it is completely feasible to use SERS technology to detect the S protein of SARS-CoV-2 on the substrate of 40 nm gold nanoparticles. The carboxyl groups in the S protein molecule of SARS-CoV-2 and gold nanoparticles are molecularly enhanced, and the amino groups and gold nanoparticles are electromagnetically enhanced, so that the Raman effect of the S protein of the SARS-CoV-2 is enhanced and the peak position is moved to a certain extent. The experiments obtained relatively good SERS spectra of the low-concentration S protein of SARS-CoV-2, which provides a method for the establishment of a sensitive, specific and rapid detection technology for the S protein of the SARS-CoV-2.
  • [1]
    Ceraolo C, Giorgi F M. Genomic variance of the 2019 nCoV coronavirus[J]. Journal of Medical Virology, 2020, 92(5): 522-528. doi: 10.1002/jmv.25700
    [2]
    朱宁. 加强国际合作 携手抗击疫情[J]. 浙江经济期刊, 2020(4):76. (Zhu Ning. Strengthen international cooperation to fight the epidemic[J]. Zhejiang Economy, 2020(4): 76
    [3]
    Coronavirus disease 2019 (COVID-19) situation report-65[EB/OL].https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200325-sitrep-65-covid-19.pdf?sfvrsn=ce13061b_2.
    [4]
    He Yi, Yang Xia, Yuan Ruo, et al. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155[J]. Analytical Chemistry, 2017, 89(16): 8538-8544. doi: 10.1021/acs.analchem.7b02321
    [5]
    王越珉, 雷喜梅, 邬丽, 等. 新型冠状病毒及其检测方法研究进展[J]. 中国计量大学学报, 2020, 31(1):1-7. (Wang Yuemin, Lei Ximei, Wu Li, et al. A review of severe acute respiratory syndrome coronavirus 2 and its detecting methods[J]. Journal of China University of Metrology, 2020, 31(1): 1-7 doi: 10.3969/j.issn.2096-2835.2020.01.001
    [6]
    李晓楠. 一种新型冠状病毒S蛋白和N蛋白联合检测胶体金试纸条及其制备方法和用途: 202010851052.5[P]. 2021-02-26.
    [7]
    Lipkowski J, Stolberg L, Yang Dongfang, et al. Molecular adsorption at metal electrodes[J]. Electrochimica Acta, 1994, 39(8/9): 1045-1056.
    [8]
    柯惟中, 吴缄中. 氨基酸在银胶溶液中的表面增强拉曼效应[J]. 光谱学与光谱分析, 2004, 24(5):551-553. (Ke Weizhong, Wu Jianzhong. Surface-Enhanced Raman Scattering (SERS) of Amino acids on silver colloid[J]. Spectroscopy and Spectral Analysis, 2004, 24(5): 551-553 doi: 10.3321/j.issn:1000-0593.2004.05.010
    [9]
    Panikkanvalappil SP, Mackey MA, El-Sayed MA. Probing the unique dehydration-induced structural modifications in cancer cell DNA using surface enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2013, 135(12): 4815-4821. doi: 10.1021/ja400187b
    [10]
    Li Xiaoxiao, Ye Sujuan, Luo Xiliang. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification[J]. Chemical Communications, 2016, 52(67): 10269-10272. doi: 10.1039/C6CC04391G
    [11]
    周民杰. 一种基于增强拉曼光谱和神经网络的新型冠状病毒检测方法及系统: 202110006417.9[P]. 2021-05-14.

    Zhou Minjie. New method and system for SARS-CoV-2 detection based on enhanced Raman spectrum and neural network: 202110006417.9[P]. 2021-05-14.
    [12]
    黄景林, 周民杰, 乐玮, 等. 表面增强拉曼光谱技术检测新型冠状病毒刺突蛋白[J]. 强激光与粒子束, 2020, 32:069001. (Huang Jinglin, Zhou Mingjie, Le Wei, et al. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32: 069001 doi: 10.11884/HPLPB202032.200145
    [13]
    王晓辉, 徐涛涛, 黄轶群, 等. 表面增强拉曼光谱在食源性致病微生物检测中的应用研究[J]. 光谱学与光谱分析, 2019, 39(1):123-129. (Wang Xiaohui, Xu Taotao, Huang Yiqun, et al. Application of surface-enhanced Raman spectroscopy for foodborne pathogens detection[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 123-129
    [14]
    Doering W E, Nie Shuming. Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement[J]. The Journal of Physical Chemistry B, 2002, 106(2): 311-317. doi: 10.1021/jp011730b
    [15]
    Stewart S, Fredericks P M. Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 1999, 55(7/8): 1615-1640.
    [16]
    胡国进, 余文玉. 生物分子的表面增强拉曼散射[J]. 江西教育学院学报(自然科学), 2002, 23(3):18-22. (Hu Guojin, Yu Wenyu. On the surface enhancement L-M scatter of biological molecule[J]. Journal of Jiangxi Institute of Education (Natural Sciences), 2002, 23(3): 18-22
    [17]
    张丹. 氨基酸的表面增强拉曼光谱研究[D]. 杭州: 浙江工业大学, 2006: 52-54

    Zhang Dan. The study of amino acid by surface-enhanced Raman scattering[D]. Hangzhou: Zhejiang University of Technology, 2006: 52-54
    [18]
    潘家来. 激光拉曼光谱在有机化学上的应用[M]. 北京: 化学工业出版社, 1986

    Pan Jialai. Application of laser Raman spectroscopy in organic chemistry[M]. Beijing: Chemical Industry Press, 1986
    [19]
    朱自莹, 顾仁熬, 陆天虹. 拉曼光谱在化学中的应用[M]. 沈阳: 东北大学出版社, 1998

    Zhu Ziying, Gu Ren’ao, Lu Tianhong. The application of Raman spectroscopy in chemistry[M]. Shenyang: Northeastern University Press, 1998
  • Relative Articles

    [1]Huang Jinglin, Zhou Minjie, Le Wei, Chen Guo, Ni Shuang, Niu Gao, Li Zeyu, Zhao Zongqing, He Zhibing, Li Bo, Zhao Songnan, Zhang Baohan, Du Kai. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32(6): 069001. doi: 10.11884/HPLPB202032.200145
    [2]Li Mingbin, Wu Xuezhong, Dong Peitao, Chen Jian. Fabrication of gold flower-like arrays based on nanosphere lithography for Raman enhancement[J]. High Power Laser and Particle Beams, 2015, 27(02): 024153. doi: 10.11884/HPLPB201527.024153
    [3]Wang Yanbin. Feasibility study of ICF ignition by swift heavy ions irradiation[J]. High Power Laser and Particle Beams, 2013, 25(01): 67-70. doi: 10.3788/HPLPB20132501.0067
    [4]Lu Jianxin, Lan Xiaofei, Huang Yongsheng, Wang Leijian, Xi Xiaofeng, Tang Xiuzhang, Yang Dawei. Energy spectra of protons driven by ultra-short laser interaction with thin gold foils[J]. High Power Laser and Particle Beams, 2012, 24(08): 1879-1881. doi: 10.3788/HPLPB20122408.1879
    [5]huang yongjun, wen guangjun, li tianqian, xie kang. Effect of negative permeability on negative permittivity in electromagnetic metamaterials[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [6]hu zhang-hu, wang qiong, song yuan-hong, wang you-nian. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [7]guo bin, tang yong-jian, luo jiang-shan, cheng jian-ping. In-situ growth of gold nanostructure on glass substrates by light irradiation and their spectral properties[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [8]guo bin, tang yong-jian, cheng jian-ping, luo jiang-shan. Preparation of mesoporous SiO2 nanorods and anchoring of Au nanoparticles on their surface[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [9]feng guang-yao, pei yuan-ji, wang xiang-qi. Simulation and analysis of the interaction between electron beam and industrial flue gas[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [10]lin xiao-dong, wu zheng-mao, xia guang-qiong, chen jian-guo. Numerical research of interactions between Gaussian-shaped spatial solitons[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [11]wang guang-chang, zheng zhi-jian, yang xiang-dong, gu yu-qiu, liu hong-jie, wen tian-shu, ge fang-fang, jiao chun-ye, zhou wei-min, zhang shuang-gen, wang xiang-xian. Measurement of transition radiation in femtosecond laser-solid target interaction[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [12]yuan zhong-cai, shi jia-ming, wang jia-chun. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [13]ma yan-yun, chang wen-wei, huang wei, zhuo hong-bing, yin yan. Local oscillating electron heating mechanism during laser plasma interaction[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [14]zheng li-yi, pan xu-dong, chen xing-wu, song hai-feng. Interacting multiple model algorithm in target tracking[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [15]zhou wei-min, gu yu-qiu, ding yong-kun, zheng zhi-jian, cai da-feng, chunyu shu-tai, wen tian-shu, chen hao, jiao chun-ye, ge fang-fang, wang guang-chang, you yong-lu, he ying-ling, . Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [16]yin yan, chang wen-wei, ma yan-yun, guo shao-feng, xu han. Energetic ions generation in the interaction between ultrashort ultraintense laser pulse and solid target[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [17]jiao chun-ye, gu yu-qiu, zhang bao-han, zheng zhi-jian, yang xiang-dong, cai da-feng, zhou wei-min, wen tian-shu, wang guang-chang, chen hao. Measurement of spontaneous magnetic field in the interactions of femtosecond laser with solid targets[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [18]ma li-ke, lu qi-sheng, zhao guo-min, jiang hou-man. Geometrical aspects of laser heating the flying cylinder[J]. High Power Laser and Particle Beams, 2004, 16(12): 0- .
    [19]he xu zhao, yi shi he. Interaction of power laser beam with supersonic free shear layer[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [20]peng hui-min, he bin, zheng wu-di, yu chnn-fu. Residual epectron energy in light element gases produced by linear polarized high intense laser[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 姜恒,张哲,江申,董妥. 表面增强拉曼光谱在呼吸道病毒检测中的研究进展. 检验医学与临床. 2023(14): 2096-2099 .
    2. 鲁佳佳,杨举,古捷,苏丽娇,陶欣,张郡童,陈艳,杨丽娟. 胺基化柱芳烃修饰的金纳米粒子及其催化活性分析. 分析化学. 2022(12): 1832-1844 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 68.8 %META: 68.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.5 %其他: 0.5 %China: 0.9 %China: 0.9 %College Station: 0.2 %College Station: 0.2 %India: 0.2 %India: 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Latvia: 0.2 %Latvia: 0.2 %Poland: 0.1 %Poland: 0.1 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.9 %United States: 0.9 %[]: 0.9 %[]: 0.9 %上海: 1.5 %上海: 1.5 %东京: 0.3 %东京: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %京都: 0.1 %京都: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 3.4 %北京: 3.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 1.1 %台州: 1.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.2 %四平: 0.2 %夏延: 0.1 %夏延: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孝感: 0.1 %孝感: 0.1 %孟买: 0.2 %孟买: 0.2 %宁波: 0.1 %宁波: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.1 %廊坊: 0.1 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.2 %徐州: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.1 %旧金山: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.2 %杭州: 2.2 %柳州: 0.2 %柳州: 0.2 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 25.0 %芒廷维尤: 25.0 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衢州: 0.9 %衢州: 0.9 %西宁: 41.3 %西宁: 41.3 %西安: 0.2 %西安: 0.2 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %银川: 0.1 %银川: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.2 %长沙: 0.2 %长治: 0.3 %长治: 0.3 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.1 %鞍山: 0.1 %韩国大田: 0.2 %韩国大田: 0.2 %首尔: 0.2 %首尔: 0.2 %黑河: 0.1 %黑河: 0.1 %其他其他ChinaCollege StationIndiaKorea Republic ofLatviaPolandTaiwan, ChinaUnited States[]上海东京中卫中山临汾丹东丽水京都保定六安兰州内江北京十堰南京南平南昌厦门台州合肥哈尔滨哥伦布嘉兴四平夏延大连天津太原威海孝感孟买宁波宣城常德平顶山广州廊坊延边朝鲜族自治州张家口徐州成都扬州无锡旧金山昆明晋城普洱朝阳杭州柳州武汉沈阳洛阳海口深圳温州渭南湖州漯河烟台盐城石家庄福州秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州衢州西宁西安西雅图诺沃克贵阳运城连云港邯郸郑州重庆金华银川长春长沙长治阳泉鞍山韩国大田首尔黑河

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (1291) PDF downloads(59) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return