Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Citation: Le Wei, Huang Jinglin, Yang Qiang, et al. Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles[J]. High Power Laser and Particle Beams, 2021, 33: 119001. doi: 10.11884/HPLPB202133.210466

Surface-enhanced Raman effect of new coronavirus S protein in gold nanoparticles

doi: 10.11884/HPLPB202133.210466
  • Received Date: 2021-10-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-15
  • Publish Date: 2021-11-15
  • Surface-enhanced Raman spectroscopy (SERS) technology has been widely used in viral molecular detection due to its high sensitivity, simple operation and rapid detection. The research of virus detection by Raman technology at home and abroad mainly focuses on the detection of the SERS spectrum of viral nucleic acids and various bases that make up the nucleic acids, and detection of viral proteins is rare. In this paper, the S protein of the new coronavirus (SARS-CoV-2) is used as the detection object, and with the label-free SERS detection method, the ordinary Raman spectra of solid and saturated liquid S protein of the SARS-CoV-2 and the SERS spectra of the low-concentration S protein of SARS-CoV-2 on the substrate of gold nanoparticles with a size of 40 nm are compared. The results show that it is completely feasible to use SERS technology to detect the S protein of SARS-CoV-2 on the substrate of 40 nm gold nanoparticles. The carboxyl groups in the S protein molecule of SARS-CoV-2 and gold nanoparticles are molecularly enhanced, and the amino groups and gold nanoparticles are electromagnetically enhanced, so that the Raman effect of the S protein of the SARS-CoV-2 is enhanced and the peak position is moved to a certain extent. The experiments obtained relatively good SERS spectra of the low-concentration S protein of SARS-CoV-2, which provides a method for the establishment of a sensitive, specific and rapid detection technology for the S protein of the SARS-CoV-2.
  • [1]
    Ceraolo C, Giorgi F M. Genomic variance of the 2019 nCoV coronavirus[J]. Journal of Medical Virology, 2020, 92(5): 522-528. doi: 10.1002/jmv.25700
    [2]
    朱宁. 加强国际合作 携手抗击疫情[J]. 浙江经济期刊, 2020(4):76. (Zhu Ning. Strengthen international cooperation to fight the epidemic[J]. Zhejiang Economy, 2020(4): 76
    [3]
    Coronavirus disease 2019 (COVID-19) situation report-65[EB/OL].https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200325-sitrep-65-covid-19.pdf?sfvrsn=ce13061b_2.
    [4]
    He Yi, Yang Xia, Yuan Ruo, et al. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155[J]. Analytical Chemistry, 2017, 89(16): 8538-8544. doi: 10.1021/acs.analchem.7b02321
    [5]
    王越珉, 雷喜梅, 邬丽, 等. 新型冠状病毒及其检测方法研究进展[J]. 中国计量大学学报, 2020, 31(1):1-7. (Wang Yuemin, Lei Ximei, Wu Li, et al. A review of severe acute respiratory syndrome coronavirus 2 and its detecting methods[J]. Journal of China University of Metrology, 2020, 31(1): 1-7 doi: 10.3969/j.issn.2096-2835.2020.01.001
    [6]
    李晓楠. 一种新型冠状病毒S蛋白和N蛋白联合检测胶体金试纸条及其制备方法和用途: 202010851052.5[P]. 2021-02-26.
    [7]
    Lipkowski J, Stolberg L, Yang Dongfang, et al. Molecular adsorption at metal electrodes[J]. Electrochimica Acta, 1994, 39(8/9): 1045-1056.
    [8]
    柯惟中, 吴缄中. 氨基酸在银胶溶液中的表面增强拉曼效应[J]. 光谱学与光谱分析, 2004, 24(5):551-553. (Ke Weizhong, Wu Jianzhong. Surface-Enhanced Raman Scattering (SERS) of Amino acids on silver colloid[J]. Spectroscopy and Spectral Analysis, 2004, 24(5): 551-553 doi: 10.3321/j.issn:1000-0593.2004.05.010
    [9]
    Panikkanvalappil SP, Mackey MA, El-Sayed MA. Probing the unique dehydration-induced structural modifications in cancer cell DNA using surface enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2013, 135(12): 4815-4821. doi: 10.1021/ja400187b
    [10]
    Li Xiaoxiao, Ye Sujuan, Luo Xiliang. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification[J]. Chemical Communications, 2016, 52(67): 10269-10272. doi: 10.1039/C6CC04391G
    [11]
    周民杰. 一种基于增强拉曼光谱和神经网络的新型冠状病毒检测方法及系统: 202110006417.9[P]. 2021-05-14.

    Zhou Minjie. New method and system for SARS-CoV-2 detection based on enhanced Raman spectrum and neural network: 202110006417.9[P]. 2021-05-14.
    [12]
    黄景林, 周民杰, 乐玮, 等. 表面增强拉曼光谱技术检测新型冠状病毒刺突蛋白[J]. 强激光与粒子束, 2020, 32:069001. (Huang Jinglin, Zhou Mingjie, Le Wei, et al. Detection of spike protein of SARS-CoV-2 by surface enhanced Raman spectroscopy[J]. High Power Laser and Particle Beams, 2020, 32: 069001 doi: 10.11884/HPLPB202032.200145
    [13]
    王晓辉, 徐涛涛, 黄轶群, 等. 表面增强拉曼光谱在食源性致病微生物检测中的应用研究[J]. 光谱学与光谱分析, 2019, 39(1):123-129. (Wang Xiaohui, Xu Taotao, Huang Yiqun, et al. Application of surface-enhanced Raman spectroscopy for foodborne pathogens detection[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 123-129
    [14]
    Doering W E, Nie Shuming. Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement[J]. The Journal of Physical Chemistry B, 2002, 106(2): 311-317. doi: 10.1021/jp011730b
    [15]
    Stewart S, Fredericks P M. Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 1999, 55(7/8): 1615-1640.
    [16]
    胡国进, 余文玉. 生物分子的表面增强拉曼散射[J]. 江西教育学院学报(自然科学), 2002, 23(3):18-22. (Hu Guojin, Yu Wenyu. On the surface enhancement L-M scatter of biological molecule[J]. Journal of Jiangxi Institute of Education (Natural Sciences), 2002, 23(3): 18-22
    [17]
    张丹. 氨基酸的表面增强拉曼光谱研究[D]. 杭州: 浙江工业大学, 2006: 52-54

    Zhang Dan. The study of amino acid by surface-enhanced Raman scattering[D]. Hangzhou: Zhejiang University of Technology, 2006: 52-54
    [18]
    潘家来. 激光拉曼光谱在有机化学上的应用[M]. 北京: 化学工业出版社, 1986

    Pan Jialai. Application of laser Raman spectroscopy in organic chemistry[M]. Beijing: Chemical Industry Press, 1986
    [19]
    朱自莹, 顾仁熬, 陆天虹. 拉曼光谱在化学中的应用[M]. 沈阳: 东北大学出版社, 1998

    Zhu Ziying, Gu Ren’ao, Lu Tianhong. The application of Raman spectroscopy in chemistry[M]. Shenyang: Northeastern University Press, 1998
  • Relative Articles

    [1]Zhang Song, Wei Biao, Liu Yixin, Mao Benjiang, Qian Yikun, Huang Yuchen, Feng Peng. Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide[J]. High Power Laser and Particle Beams, 2020, 32(5): 056001. doi: 10.11884/HPLPB202032.190478
    [2]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [3]Sun Huifang, Zhang Lingyu, Dong Zhiwei, Zhou Haijing. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31(10): 103221. doi: 10.11884/HPLPB201931.190143
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Shi Tao, Ma Jimin, Qiu Youheng, Huang Hongwen, Li Zhenghong, Qian Dazhi. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30(1): 016006. doi: 10.11884/HPLPB201830.170163
    [6]Xu Yangyang, Tuo Xianguo, Shi Rui, Zheng Honglong, Liu Yuqi. Alpha radioactive source spectrum measurement simulationbased on Monte Carlo method[J]. High Power Laser and Particle Beams, 2017, 29(04): 044001. doi: 10.11884/HPLPB201729.160481
    [7]Lü Wenhui, Guo Huiping, Lü Ning, Hou Yijie, Wang Xiaotian, Zhao Kuo, Tian Chenyang. Design of alignment and shielding structure for small D-D neutron tube with 2.45 MeV neutron source[J]. High Power Laser and Particle Beams, 2017, 29(12): 126008. doi: 10.11884/HPLPB201729.170225
    [8]Dong Xiaoxia, Liu Qiang, Zhao Xiang, Yan Liping, Zhou Haijing, Huang Kama. Boundary condition in analysis of high-frequency electromagnetic field coupling to non-uniform multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2017, 29(09): 093201. doi: 10.11884/HPLPB201729.170058
    [9]Yexin Ouwen, Liu Shichang, Wang Kan. Research on RMC neutronics-thermal hydraulics coupling based on universal coupling methodology[J]. High Power Laser and Particle Beams, 2017, 29(01): 016003. doi: 10.11884/HPLPB201729.160190
    [10]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [11]Xu Yang, Wei Biao, Mao Benjiang, Liu Yixin, Feng Peng. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28(09): 096004. doi: 10.11884/HPLPB201628.160018
    [12]Sun Jialong, Yu Ganglin, She Ding, Wang Kan. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(01): 219-222. doi: 10.3788/HPLPB20132501.0219
    [13]Zhang Jinzhao, Tuo Xianguo, Li Zhe, Li Li, Wan Zhixiong. Monte Carlo simulation of radiation measurement of Na activation in blood[J]. High Power Laser and Particle Beams, 2013, 25(01): 189-192. doi: 10.3788/HPLPB20132501.0189
    [14]Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143
    [15]Yan Yonghong, Zhao Zongqing, Wu Yuchi, Wei Lai, Hong Wei, Gu Yuqiu, Cao Leifeng, Yao Zeen. Monte Carlo simulation on single photon counting charge coupled device[J]. High Power Laser and Particle Beams, 2013, 25(01): 211-214. doi: 10.3788/HPLPB20132501.0211
    [16]Xiao Bo, Huang Jiaofeng, Zhang Xuan, Jing Yuefeng. "Measurement” of parameters in discrete program using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2013, 25(01): 138-142. doi: 10.3788/HPLPB20132501.0138
    [17]Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978. doi: 10.3788/HPLPB20122412.2975
    [18]Huang Jiaofeng, ZHong Min, Liu Jin, Jing Yuefeng, Liu Jun, SHi Jiangjun. Parallelization of flash X-ray radiography Monte Carlo code[J]. High Power Laser and Particle Beams, 2012, 24(12): 2965-2969. doi: 10.3788/HPLPB20122412.2965
    [19]luan xiting, deng yongfeng, tan chang, han xianwei, mao genwang. Properties of electron-beam produced air plasma in nonuniform magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [20]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
  • Cited by

    Periodical cited type(7)

    1. 李雪宾,张鑫,简家文. 带有温度补偿的高灵敏度光纤布喇格光栅水听器. 光通信技术. 2020(04): 26-29 .
    2. 王小羊. 光栅常数测定方法探讨. 电大理工. 2018(01): 1-2+8 .
    3. 郭瑜,朱星盈,倪屹,王娟,李岱林. 三维光纤布拉格光栅应变传感器的温度补偿技术. 激光与光电子学进展. 2018(05): 82-87 .
    4. 孙诗晴,初凤红,卢家焱. 光纤布拉格光栅传感器交叉敏感问题的研究进展. 激光与光电子学进展. 2017(04): 82-91 .
    5. 赵亚丽,李玉华,张春青. 基于DWDM与MATLAB的光纤光栅压力传感解调系统的研究. 承德石油高等专科学校学报. 2016(06): 54-56+84 .
    6. 巩鑫,华灯鑫,李仕春,王骏,代晨昱. 时分复用光纤光栅系统的边缘滤波解调与标定. 中国激光. 2016(10): 244-252 .
    7. 姜学鹏,陈姝,周健. 风载环境下隧道光纤光栅火灾探测器响应和报警特性. 隧道建设. 2016(10): 1202-1206 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.5 %META: 71.5 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.3 %[]: 0.3 %上海: 0.7 %上海: 0.7 %上饶: 0.2 %上饶: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 18.4 %北京: 18.4 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.2 %大连: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 1.0 %张家口: 1.0 %成都: 0.1 %成都: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.5 %深圳: 0.5 %湖州: 0.1 %湖州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 0.6 %芝加哥: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 56.8 %西宁: 56.8 %西安: 0.1 %西安: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.4 %运城: 0.4 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %长治: 0.1 %长治: 0.1 %其他ChinaIndiaKorea Republic ofSeattle[]上海上饶中山临汾丹东丽水北京台州合肥哥伦布大连广州张家口成都晋城普洱杭州桃园武汉沈阳济南深圳湖州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安达尔斯运城郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (1301) PDF downloads(59) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return