Li Shuwang, Shao Shiyong, Mei Haiping, et al. Photo-thermal interferometry phase generation carrier of aerosol absorption[J]. High Power Laser and Particle Beams, 2016, 28: 041001. doi: 10.11884/HPLPB201628.121001
Citation: Wen Junlong, Li Wei, Tan Jianchang, et al. Integrated mode measurement and control method based on fractional Fourier transform[J]. High Power Laser and Particle Beams, 2021, 33: 111009. doi: 10.11884/HPLPB202133.210489

Integrated mode measurement and control method based on fractional Fourier transform

doi: 10.11884/HPLPB202133.210489
  • Received Date: 2021-10-15
  • Accepted Date: 2021-11-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-22
  • Publish Date: 2021-11-15
  • In this paper, the integrated mode measurement and control method based on fractional Fourier transform is proposed. The fractional Fourier transform optical system is used to modulate the spatial and phase distributions of the fiber mode coupling states so that the mode decomposition can be realized effectively. Compared with dual Fourier transform (F2) method as well as spatial and spectral imaging (S2) method, the fractional Fourier transform method adopted in this system is easier to decompose high-order modes by changing fractional order parameters, and controlling the spatial distributions of modes as well as the superposition states between modes. The mode measurement method based on the fractional Fourier transform can be studied in the spatial and phase superposition of modes in a wider range of space, and it can also be degenerated to F2 and S2 methods.
  • [1]
    Zhao Yongliang, Su Delong, Li Yongxi. A multi-parameter sensor based on cascaded photonic crystal cavities filled with magnetic fluid[J]. Optics and Photonics Journal, 2020, 10(7): 183-196. doi: 10.4236/opj.2020.107020
    [2]
    Schulze C, Brüning R, Schröter S, et al. Mode coupling in few-mode fibers induced by mechanical stress[J]. Journal of Lightwave Technology, 2015, 33(21): 4488-4496. doi: 10.1109/JLT.2015.2475603
    [3]
    Randel S, Ryf R, Sierra A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 2011, 19(17): 16697-16707. doi: 10.1364/OE.19.016697
    [4]
    Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi: 10.1364/AOP.7.000066
    [5]
    Li Guifang, Bai Neng, Zhao Ningbo, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487. doi: 10.1364/AOP.6.000413
    [6]
    Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [7]
    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [8]
    Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925. doi: 10.1364/OE.20.012912
    [9]
    Proctor J, Kutz J N. Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays[J]. Optics Express, 2005, 13(22): 8933-8950. doi: 10.1364/OPEX.13.008933
    [10]
    Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber[J]. Optics Letters, 1996, 21(1): 27-29. doi: 10.1364/OL.21.000027
    [11]
    Gruner-Nielsen L, Sun Yi, Nicholson J W, et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss[J]. Journal of Lightwave Technology, 2012, 30(23): 3693-3698. doi: 10.1109/JLT.2012.2227243
    [12]
    Yan Wei, Xu Xiaojun, Wang Jianguo. Modal decomposition for few mode fibers using the fractional Fourier system[J]. Optics Express, 2019, 27(10): 13871-13883. doi: 10.1364/OE.27.013871
    [13]
    张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析[J]. 物理学报, 2016, 65:154202. (Zhang Shulin, Feng Guoying, Zhou Shouhuan. Fiber modal content analysis based on spatial and spectral Fourier transform[J]. Acta Physica Sinica, 2016, 65: 154202 doi: 10.7498/aps.65.154202
    [14]
    冯国英, 郑世杰, 谭建昌, 等. 光纤激光模场及表征技术进展[J]. 强激光与粒子束, 2021, 33:031001. (Feng Guoying, Zheng Shijie, Tan Jianchang, et al. Progress on mode field distribution and characterization technology of the optical fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 031001
    [15]
    Nicholson J W, Yablon A D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 7233-7243. doi: 10.1364/OE.16.007233
    [16]
    Zhou Hailong, Zhu Qiuchi, Liang Wenhai, et al. Mode measurement of few-mode fibers by mode-frequency mapping[J]. Optics Letters, 2018, 43(7): 1435-1438. doi: 10.1364/OL.43.001435
    [17]
    Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform[J]. Journal of the Optical Society of America A, 1993, 10(10): 2181-2186. doi: 10.1364/JOSAA.10.002181
    [18]
    吴平,李波,陈天禄,等. 分数傅里叶变换面上余弦-高斯光束的变换特性[J]. 强激光与粒子束, 2005, 17(12):1787-1790. (Wu Ping , Li Bo, Chen Tianlu, et al. Transformation properties of a Cosine-Gaussian beam in fractional Fourier transform plane[J]. High Power Laser and Particle Beams, 2005, 17(12): 1787-1790
    [19]
    Dai Z P, Wang Y B, Zeng Q, et al. Propagation and transformation of four-petal Gaussian vortex beams in fractional Fourier transform optical system[J]. Optik - International Journal for Light and Electron Optics, 2021, 167644: 1-9. doi: 10.1016/j.ijleo.2021.167644
    [20]
    Wang Chongxi, Pan Chen, Xu Jinsheng, et al. Analysis of misalignment, twist, and bend in few-mode fibers using spatially and spectrally resolved imaging[J]. Optical Fiber Technology, 2020, 56: 102205. doi: 10.1016/j.yofte.2020.102205
    [21]
    Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optics Express, 2007, 15(23): 15402-15409. doi: 10.1364/OE.15.015402
    [22]
    文亮. 分数傅里叶变换及其应用[D]. 重庆: 重庆大学, 2008: 1-40

    Wen Liang. Fractional Fourier transform and its application[J]. Chongqing: Chongqing University, 2008: 1-40
  • Relative Articles

    [1]Lu Feng, Wang Zhenzhong, Huang Xuepeng, Lei Pengli. Modal analysis and mid-spatial-frequency errors suppression of 6-DOF bonnet polishing robot[J]. High Power Laser and Particle Beams, 2022, 34(11): 119001. doi: 10.11884/HPLPB202234.220013
    [2]Xiao Jing, Wang Haiyang, Xie Linshen, Cheng Le, Sun Chuyu, Shi Ling. Adaptability analysis and optimization design of modular Marx generator in mechanical environment[J]. High Power Laser and Particle Beams, 2022, 34(4): 045001. doi: 10.11884/HPLPB202234.210344
    [3]Wang Keying, Fan Xuanhua, Chen Xueqian, Niu Hongpan. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32(1): 011021. doi: 10.11884/HPLPB202032.190269
    [4]Liu Zhiyong, Zeng Herong, Wang Shaohua, Guo haibing, Ma jimin. Finite element analysis of subcritical energy blanket for uranium-based fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2018, 30(3): 036001. doi: 10.11884/HPLPB201830.170099
    [5]Hu Jie, Fan Xuanhua, Chen Xueqian. Simplified modeling of opto-mechanical structure based on dynamic stiffness equivalence[J]. High Power Laser and Particle Beams, 2017, 29(09): 092002. doi: 10.11884/HPLPB201729.170103
    [6]Gao Yang, Zhou Bin, He Yi, He Wanjing. Modeling and simulation on film bulk acoustic resonator with silicon oxide temperature-compensated layer[J]. High Power Laser and Particle Beams, 2015, 27(01): 014103. doi: 10.11884/HPLPB201527.014103
    [7]Liu Zhiyong, Li Zhenghong, Huang Hongwen, Zeng Herong, Wang Shaohua. Finite element analysis of ITER magnet support structure[J]. High Power Laser and Particle Beams, 2015, 27(01): 016013. doi: 10.11884/HPLPB201527.016013
    [8]Zhang Jianghua, Yang Hanwu, Zhang Hua, Tian Xiwen, Liang Bo, Li Song. Constant current charging process of MV-level Marx generator[J]. High Power Laser and Particle Beams, 2012, 24(04): 903-906. doi: 10.3788/HPLPB20122404.0903
    [9]jiang zhiqiang, du hanwen. Mechanical analysis and optimization for taper mechanism of in-vacuum undulator[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [10]chen xueqian, feng jiaquan, xu yuanli. Stability reallocation of large solid state laser based on finite element analysis[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]chen ming-jun, pang qi-long, liu xin-yan. Finite element analysis on influence of micro-nano machined surface impurity on optical performance of crystal[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [12]xu gang, zhang jin-qi, zhang xian-fu, yang zhou-bing, meng fan-bao, tang chuan-xiang. Electrical insulation design and numerical simulation analysis of 1 MV compact repetitive Marx generator[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [13]zhang li-sha, xu hong. Influence of oxygen partial pressure on HfO2 residual stresses and its finite element analysis[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
    [14]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye. Structure design and finite-element analysis of multilayer-mirror soft X-ray energy spectrometer[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [15]huang hong-bin, li jing-zhen, gong xiang-dong, sun feng-shan, ai yue-xia, he tie-feng. Modal analysis of rotating mirror clipped by the elastic bearings for ultra-high speed photography[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [16]zhang jun-wei, feng bin, zhou yi, wang shi-long, xiang yong. Finite element analysis on ambient thermal stability of large aperture optical element[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]wang jin-shan, zhu yu-qun, jiang chao. Finite element analysis of heat transfer in hollow micro-sphere filled with ICF fuel[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [18]cao ding-xiang, zheng wan-guo, he shao-bo, yuan xiao-dong, yu hai-wu, xu mei-jian, cai zhen. Finite element analysis on thermal effect of heat capacity laser disk[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [19]qi wen-zong, huang wei, zhang bin, cai bang-wei, xiong sheng-ming, . Finite element analysis of thermal distortion of infrared CW laser reflectors[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [20]yu de-li, sang feng-ting, jin yu-qi, sun yi-zhu. Finite Element Analysis of the Mirror in High-energy Density Laser Resonator[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 .
    2. 张超,陈焕红,刘雪峰,石志成,张艾. 双级升压高速电光调Q驱动电路设计. 航天返回与遥感. 2023(05): 65-71 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.3 %FULLTEXT: 22.3 %META: 76.1 %META: 76.1 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %其他: 1.4 %其他: 1.4 %China: 1.9 %China: 1.9 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Japan: 0.2 %Japan: 0.2 %Koesan: 0.1 %Koesan: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.2 %Pakistan: 0.2 %Rajahmundry: 0.7 %Rajahmundry: 0.7 %Russian Federation: 0.2 %Russian Federation: 0.2 %Serbia: 0.4 %Serbia: 0.4 %Turkey: 0.3 %Turkey: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.8 %[]: 0.8 %上海: 1.6 %上海: 1.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %京畿道: 0.1 %京畿道: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.7 %哈尔科夫: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %圣保罗: 0.1 %圣保罗: 0.1 %多拉杜斯: 0.1 %多拉杜斯: 0.1 %天安: 0.3 %天安: 0.3 %天津: 0.1 %天津: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.2 %张家口: 0.2 %徐州: 0.1 %徐州: 0.1 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.1 %温州: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 1.1 %绵阳: 1.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 47.8 %西宁: 47.8 %西安: 1.4 %西安: 1.4 %贵阳: 0.4 %贵阳: 0.4 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %首尔: 0.1 %首尔: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)JapanKoesanKorea Republic ofPakistanRajahmundryRussian FederationSerbiaTurkeyUnited States[]上海中山临汾丹东京畿道保定兰州北京十堰南京南昌台北台州合肥呼和浩特咸阳哈尔科夫哥伦布圣保罗多拉杜斯天安天津宜昌宣城广州张家口徐州成都扬州晋城普洱杭州武汉沈阳沧州泉州深圳温州漯河烟台石家庄秦皇岛绵阳罗奥尔凯埃美国伊利诺斯芝加哥芒廷维尤苏州衡水衢州西宁西安贵阳达尔斯运城邯郸郑州重庆长沙长治首尔香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (796) PDF downloads(49) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return