Yang Jinwen, Yi Tao, Li Tingshuai, et al. Electromagnetic pulse characteristic in process of laser shooting[J]. High Power Laser and Particle Beams, 2015, 27: 103224. doi: 10.11884/HPLPB201527.103224
Citation: Li Xiaowei, Tan Jiachang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498

All-fiber dual-parameter sensor based on Mach-Zehnder interference

doi: 10.11884/HPLPB202133.210498
  • Received Date: 2021-10-10
  • Accepted Date: 2021-11-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-22
  • Publish Date: 2021-11-15
  • This paper proposes an all-fiber Mach-Zehnder Interference (MZI) dual-parameter sensor based on S-shaped-dislocation structure. The sensor is prepared by using fusion splicer through simple discharge and fusion splicing steps, with pieces of single-mode fibers. When the rotator is twisting clockwise, the transmission spectrum of the sensor shifts to the short wavelength direction; when it is twisting counterclockwise, the transmission spectrum shifts to the different direction. The sensor’s torsion experimental results show that the torsion direction can be distinguished, and the torsion sensitivity in the clockwise and counterclockwise rotation directions on the fiber cross-section is −223 pm/(rad·cm−1), 140 pm/(rad·cm−1), respectively. The strain sensitivity within a certain strain range is 0.145×106 dB/ε (where ε is strain), and the temperature cross sensitivity is extremely small and can be ignored. Therefore, this dual-parameter sensor based on the SMF core-cladding MZI interferometer has the advantages of high sensing sensitivity, small size, simple process, low cost, and distinguishable torsion direction. It is expected to become a good candidate instruments in many dual-parameter measurement operations.
  • [1]
    Fu Guangwei, Li Yunpu, Li Qifeng, et al. Temperature insensitive vector bending sensor based on asymmetrical cascading SMF-PCF-SMF structure[J]. IEEE Photonics J, 2017, 9: 7103114. doi: 10.1109/JPHOT.2017.2692277
    [2]
    He Wei, Fang Yitao, Zhu Lianqing, et al. Optical fiber interference sensor based on fiber ending micro-groove fabricated by femtosecond laser[J]. Optik, 2018, 158: 1295-1301. doi: 10.1016/j.ijleo.2018.01.014
    [3]
    Zhang Wen, Hao Jiaqi, Dong Mingli, et al. A dual-parameter sensor for strain and temperature measurement featuring cascaded LPFG-FP structure[J]. Optik, 2018, 171: 632-641. doi: 10.1016/j.ijleo.2018.05.133
    [4]
    Lin C Y, Wang L A, Chern G W. Corrugated long-period fiber gratings as strain, torsion, and bending sensors[J]. J Lightw Technol, 2001, 19(8): 1159-1168. doi: 10.1109/50.939797
    [5]
    Wang Yiping, Wang Ming, Huang Xiaoqin. In fiber Bragg grating twist sensor based on analysis of polarization dependent loss[J]. Opt Express, 2013, 21(10): 11913-11920. doi: 10.1364/OE.21.011913
    [6]
    Yu Fangda, Xue Peng, Zheng Jie. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach-Zehnder interferometer[J]. IEEE Sens J, 2019, 19(9): 3328-3334. doi: 10.1109/JSEN.2019.2892718
    [7]
    Tian Zhaobing, Yam S S H, Loock H P. Single-mode fiber refractive index sensor based on core-offset attenuators[J]. IEEE Photonics Technol Lett, 2008, 20(16): 1387-1389. doi: 10.1109/LPT.2008.926832
    [8]
    Wang Qi, Kong Lingxin, Dang Yunli, et al. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer[J]. Sens Actuators B:Chem, 2016, 225: 213-220. doi: 10.1016/j.snb.2015.11.047
    [9]
    Zheng Jiarong, Yan Peiguang, Yu Yongqin, et al. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer[J]. Opt Commun, 2013, 297: 7-11. doi: 10.1016/j.optcom.2013.01.063
    [10]
    Rao Yunjiang, Zhu Tao, Mo Qiuju. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating[J]. Opt Commun, 2006, 266(1): 187-190. doi: 10.1016/j.optcom.2006.04.045
    [11]
    Bai Zhiyong, Deng Mi, Liu Shen, et al. Torsion sensor with rotation direction discrimination based on a pre-twisted in-fiber Mach-Zehnder interferometer[J]. IEEE Photonics J, 2017, 9: 7103708. doi: 10.1109/JPHOT.2017.2702662
    [12]
    Zhou Jiangtao, Liao Changrui, Wang Yiping, et al. Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer[J]. Opt Express, 2014, 22(2): 1680-1686. doi: 10.1364/OE.22.001680
    [13]
    Subramanian R, Chengliang Z, Hua Z, et al. Torsion, strain, and temperature sensor based on helical long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2018, 30: 327-330. doi: 10.1109/LPT.2017.2787157
    [14]
    Liu Y, Deng H, Yuan L. Directional torsion and strain discrimination based on Mach-Zehnder interferometer with off-axis twisted deformations[J]. Optics and Laser Technology, 2019, 120: 105754. doi: 10.1016/j.optlastec.2019.105754
  • Relative Articles

    [1]Fu Bowen, Zhang Qinnan, Tian Yong, Tian Jindong. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34(3): 031018. doi: 10.11884/HPLPB202234.210271
    [2]Zhang Rongwei, Li Ping, Zhang Yonghua. Simulation study of synchronization pulsed-jamming on frequency-hopping communication system[J]. High Power Laser and Particle Beams, 2018, 30(9): 093202. doi: 10.11884/HPLPB201830.170534
    [3]Jiang Zhanxing, Zhao Guangyi, Zhang Xiaoqiang, Zeng Hongkai, Zhou Lin, Wang Zhen. Structural optimization of multi-gap gas switch with corona discharge for voltage balance[J]. High Power Laser and Particle Beams, 2017, 29(07): 075003. doi: 10.11884/HPLPB201729.170005
    [4]Jiang Zhanxing, Wang Zhen, Zhou Lin. Multi-gap gas switch for LTD stages[J]. High Power Laser and Particle Beams, 2017, 29(02): 025007. doi: 10.11884/HPLPB201729.160496
    [5]Lin Lingshu, Yuan Weiqun, Zhao Ying, Wang Zhizeng, Yan Ping. Scaling method on electromagnetic railgun[J]. High Power Laser and Particle Beams, 2016, 28(01): 015007. doi: 10.11884/HPLPB201628.015007
    [6]Gao Yang, Li Junru. Cooperative multi-physics simulation on self-heating effect of capacitive RF MEMS switch[J]. High Power Laser and Particle Beams, 2016, 28(06): 064108. doi: 10.11884/HPLPB201628.064108
    [7]Li Yong, Xie Haiyan, Yang Zhiqiang, Xuan Chun, Xia Hongfu. Response of metal-oxide -semiconductor field effect transistor to high-power microwaves[J]. High Power Laser and Particle Beams, 2015, 27(10): 103242. doi: 10.11884/HPLPB201527.103242
    [8]Xu Ke, Zeng Hongzheng, Chen Xing. Analysis of avalanche breakdown within Schottky diode based on multi-physics simulation[J]. High Power Laser and Particle Beams, 2015, 27(10): 103213. doi: 10.11884/HPLPB201527.103213
    [9]Xu Ke, Chen Xing, Wang Hao. Multi-physics simulation for analyzing high power microwave electromagnetic effect of electromagnetic system[J]. High Power Laser and Particle Beams, 2014, 26(07): 073220. doi: 10.11884/HPLPB201426.073220
    [10]Wang Peng, Li Mingjia, Kang Qiang, Tan Jie, Luo Min, Wang Ganping, Yang Xiaoliang. Simulation and experimental research on L-type pulse forming network[J]. High Power Laser and Particle Beams, 2013, 25(09): 2461-2465. doi: 10.3788/HPLPB20132509.2461
    [11]sun peng, lei bin, li zhiyuan, guo chunlong. Finite element analysis on 3-D electromagnetic field of electromagnetic launching composite intercepting projectile[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [12]pan ruzheng, wang jue, yan ping, sun guangsheng, zhang dongdong, zhou yuan, li mintang. Monte Carlo simulation of laser-triggered flashover in air condition[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]zhang yundong, cai yuanxue, yang chaobo, dang boshi, wang jinfang, yuan ping. High sensitivity slow light interferometer[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [14]zhang dong-dong, yan ping, wang jue. Simulation on a magnetic pulse compression system[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [15]cai zheng-ping, cao xiang-jun, wang yong. Simulation study on high power solid-state modulator[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [16]zhao wen-bin, zhang guan-jun, yan zhang. Research progress on flashover phenomena across semiconducting materials under high electric field[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [17]huang zong-sheng, qin shi-qiao, wang xing-shu. Simulation of laser spot parameters measured with detector array[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]li wen-yu, wang jin-bao, cheng xiang-ai, lu qi-sheng. New analysis on laser-induced damage mechanism of array CCD device[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [19]he yong, chen de-huai, lin fu-chang, li jin, . Simulation and measurement of electromagnetic interference in a pulsed supply of high power laser[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(5)

    1. 李建林,雷广智,白杨,白冰,孙延笑. 电光-MoSe_2主被动双调Q 946 nm全固态激光器. 光子学报. 2018(05): 15-22 .
    2. 汪峰,田丰,武风波. 灯泵Cr, Nd:GSGG晶体热效应的有限元研究. 实验室研究与探索. 2018(11): 28-31 .
    3. 屈鹏飞,王石语,过振,蔡德芳,李兵斌. 热效应对激光器光束质量的自适应调整技术. 光学学报. 2017(05): 156-163 .
    4. 龚梦帆,肖光宗,于旭东,张斌. 一体化Y型腔正交偏振氦氖激光器的温度场仿真与实验. 红外与激光工程. 2016(05): 59-65 .
    5. 罗宽,王菲,车英,张国玉. 偏振变换法测量固体激光器的动态热焦距. 红外与激光工程. 2016(10): 239-243 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 78.3 %META: 78.3 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %其他: 0.3 %其他: 0.3 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.7 %上海: 0.7 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 21.4 %北京: 21.4 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.9 %天津: 0.9 %宁波: 0.1 %宁波: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %广州: 0.4 %广州: 0.4 %张家口: 1.2 %张家口: 1.2 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %桂林: 0.1 %桂林: 0.1 %武汉: 0.3 %武汉: 0.3 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.8 %漯河: 1.8 %焦作: 0.2 %焦作: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 43.0 %西宁: 43.0 %西安: 0.7 %西安: 0.7 %贵阳: 0.1 %贵阳: 0.1 %达尔斯: 0.5 %达尔斯: 0.5 %达州: 0.1 %达州: 0.1 %运城: 0.2 %运城: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %随州: 0.1 %随州: 0.1 %其他其他ChinaIndiaUnited States[]上海中卫中山临汾丹东保定兰州北京十堰南京南宁周口呼和浩特哥伦布嘉兴大连天津宁波宜春宣城常州广州张家口成都扬州普洱杭州桂林武汉洛阳淄博淮安深圳温州湖州漯河焦作石家庄福州秦皇岛绍兴芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安贵阳达尔斯达州运城邯郸郑州鄂州重庆长沙长治随州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1033) PDF downloads(50) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return