Zhang Xuehai, Wei Heli, Dai Congming, et al. A Study of scattering properties of fly ash aerosols: comparison of laboratory and Lorenz-Mie results[J]. High Power Laser and Particle Beams, 2015, 27: 071004. doi: 10.11884/HPLPB201527.071004
Citation: Li Xiaowei, Tan Jiachang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33: 111010. doi: 10.11884/HPLPB202133.210498

All-fiber dual-parameter sensor based on Mach-Zehnder interference

doi: 10.11884/HPLPB202133.210498
  • Received Date: 2021-10-10
  • Accepted Date: 2021-11-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-22
  • Publish Date: 2021-11-15
  • This paper proposes an all-fiber Mach-Zehnder Interference (MZI) dual-parameter sensor based on S-shaped-dislocation structure. The sensor is prepared by using fusion splicer through simple discharge and fusion splicing steps, with pieces of single-mode fibers. When the rotator is twisting clockwise, the transmission spectrum of the sensor shifts to the short wavelength direction; when it is twisting counterclockwise, the transmission spectrum shifts to the different direction. The sensor’s torsion experimental results show that the torsion direction can be distinguished, and the torsion sensitivity in the clockwise and counterclockwise rotation directions on the fiber cross-section is −223 pm/(rad·cm−1), 140 pm/(rad·cm−1), respectively. The strain sensitivity within a certain strain range is 0.145×106 dB/ε (where ε is strain), and the temperature cross sensitivity is extremely small and can be ignored. Therefore, this dual-parameter sensor based on the SMF core-cladding MZI interferometer has the advantages of high sensing sensitivity, small size, simple process, low cost, and distinguishable torsion direction. It is expected to become a good candidate instruments in many dual-parameter measurement operations.
  • [1]
    Fu Guangwei, Li Yunpu, Li Qifeng, et al. Temperature insensitive vector bending sensor based on asymmetrical cascading SMF-PCF-SMF structure[J]. IEEE Photonics J, 2017, 9: 7103114. doi: 10.1109/JPHOT.2017.2692277
    [2]
    He Wei, Fang Yitao, Zhu Lianqing, et al. Optical fiber interference sensor based on fiber ending micro-groove fabricated by femtosecond laser[J]. Optik, 2018, 158: 1295-1301. doi: 10.1016/j.ijleo.2018.01.014
    [3]
    Zhang Wen, Hao Jiaqi, Dong Mingli, et al. A dual-parameter sensor for strain and temperature measurement featuring cascaded LPFG-FP structure[J]. Optik, 2018, 171: 632-641. doi: 10.1016/j.ijleo.2018.05.133
    [4]
    Lin C Y, Wang L A, Chern G W. Corrugated long-period fiber gratings as strain, torsion, and bending sensors[J]. J Lightw Technol, 2001, 19(8): 1159-1168. doi: 10.1109/50.939797
    [5]
    Wang Yiping, Wang Ming, Huang Xiaoqin. In fiber Bragg grating twist sensor based on analysis of polarization dependent loss[J]. Opt Express, 2013, 21(10): 11913-11920. doi: 10.1364/OE.21.011913
    [6]
    Yu Fangda, Xue Peng, Zheng Jie. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach-Zehnder interferometer[J]. IEEE Sens J, 2019, 19(9): 3328-3334. doi: 10.1109/JSEN.2019.2892718
    [7]
    Tian Zhaobing, Yam S S H, Loock H P. Single-mode fiber refractive index sensor based on core-offset attenuators[J]. IEEE Photonics Technol Lett, 2008, 20(16): 1387-1389. doi: 10.1109/LPT.2008.926832
    [8]
    Wang Qi, Kong Lingxin, Dang Yunli, et al. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer[J]. Sens Actuators B:Chem, 2016, 225: 213-220. doi: 10.1016/j.snb.2015.11.047
    [9]
    Zheng Jiarong, Yan Peiguang, Yu Yongqin, et al. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer[J]. Opt Commun, 2013, 297: 7-11. doi: 10.1016/j.optcom.2013.01.063
    [10]
    Rao Yunjiang, Zhu Tao, Mo Qiuju. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating[J]. Opt Commun, 2006, 266(1): 187-190. doi: 10.1016/j.optcom.2006.04.045
    [11]
    Bai Zhiyong, Deng Mi, Liu Shen, et al. Torsion sensor with rotation direction discrimination based on a pre-twisted in-fiber Mach-Zehnder interferometer[J]. IEEE Photonics J, 2017, 9: 7103708. doi: 10.1109/JPHOT.2017.2702662
    [12]
    Zhou Jiangtao, Liao Changrui, Wang Yiping, et al. Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer[J]. Opt Express, 2014, 22(2): 1680-1686. doi: 10.1364/OE.22.001680
    [13]
    Subramanian R, Chengliang Z, Hua Z, et al. Torsion, strain, and temperature sensor based on helical long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2018, 30: 327-330. doi: 10.1109/LPT.2017.2787157
    [14]
    Liu Y, Deng H, Yuan L. Directional torsion and strain discrimination based on Mach-Zehnder interferometer with off-axis twisted deformations[J]. Optics and Laser Technology, 2019, 120: 105754. doi: 10.1016/j.optlastec.2019.105754
  • Relative Articles

    [1]Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320
    [2]Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, Wang Tao, Zhang Tianxiong, Rao Daxing, Liu Dong, Cui Yong, Ji Lailin, Shi Haitao, Feng Wei, Sui Zhan. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012. doi: 10.11884/HPLPB202234.210267
    [3]Hou Chunyuan, Rao Daxing, Li Fujian, Zheng Quan, Gao Yanqi, Cui Yong, Zhao Xiaohui, He Ruijing, Sui Zhan, Xiang Xia. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33(7): 071005. doi: 10.11884/HPLPB202133.210027
    [4]Gao Yanqi, Ji Lailin, Cui Yong, Rao Daxing, Zhao Xiaohui, Feng Wei, Xia Lan, Liu Dong, Wang Tao, Shi Haitao, Li Fujian, Liu Jia, Du Pengyuan, Li Xiaoli, Liu Jiani, Zhang Tianxiong, Shan Chong, Ma Weixin, Sui Zhan, Fu Sizu. kJ low-coherence broadband Nd:glass laser driver facility[J]. High Power Laser and Particle Beams, 2020, 32(1): 011004. doi: 10.11884/HPLPB202032.190427
    [5]Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007. doi: 10.11884/HPLPB202032.200203
    [6]Yu Shijie, Long Minhui, Lu Fang, Han Xiang’e. Experiment of partially coherent and coherent light propagating through a turbulence emulator[J]. High Power Laser and Particle Beams, 2015, 27(01): 011002. doi: 10.11884/HPLPB201527.011002
    [7]Kang Dongguo, Li Meng, Gao Yaoming. Radiation pulse shaping for laser indirect-drive central ignition target[J]. High Power Laser and Particle Beams, 2013, 25(01): 57-61. doi: 10.3788/HPLPB20132501.0057
    [8]Zou Shengwu, Zhang Tongyi. Spatiotemporal shaping of terahertz pulses using conductive apertures of finite thickness[J]. High Power Laser and Particle Beams, 2013, 25(05): 1325-1331. doi: 10.3788/HPLPB20132505.1325
    [9]Zhang Hui, Hou Deting, Li Xia. Coherent control of non-resonant two-photon transition in intense laser field[J]. High Power Laser and Particle Beams, 2013, 25(11): 2861-2864. doi: 10.3788/HPLPB20132511.2861
    [10]xu yan, wan yongjian, wu yongqian. Ring source technology based on spatial coherence control[J]. High Power Laser and Particle Beams, 2011, 23(12): 18-19.
    [11]chen guangming, lin huichuan, pu jixiong. Generation of bottle beam by modulating spatial coherence of light beam[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [12]yang yuchuan, luo hui, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin. Effect of temporal partial coherence of flat-topped Gauss ultrashort-pulse lasers on coherent combination[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [13]zheng huan, wang anting, xu lixin, ming hai. Frequencies of intensity fluctuation in linearly chirped Gaussian pulse stacking[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [14]wang feng-rui, zhang ying, zhu qi-hua, xie xu-dong, wang xiao, zeng xiao-ming, huang xiao-jun, sun li, guo yi, deng wu, huang zheng. Theoretical study of spectral shaping by liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [15]zhou pu, hou jing, chen zi-lun, liu ze-jin. Effect of partially coherence of high power fiber laser on coherent combination[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [16]wang shuang-yi, lu zhi-wei, lin dian-yang, wang chao, gao hong-yan, dong yong-kang. KrF laser pulse shaping by pulse stacking[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [17]wan min, zhang wei, xiang ru-jian, yang rui. Influence of laser spatial coherence on illumination uniformity[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [18]xie yong-jie, zhao xue-qing, wamng li-jun, liu jing-ru, yuan xiao. The experimental study of partially coherence light source produced by liquid crystal[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 张学海,戴聪明,张鑫,魏合理,朱希娟,马静. 相对湿度和粒子形态对海盐气溶胶粒子散射特性的影响. 红外与激光工程. 2019(08): 253-260 .
    2. 李树旺,邵士勇,梅海平,饶瑞中. 气溶胶吸收的光热干涉相位载波算法. 强激光与粒子束. 2016(04): 12-16 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 78.8 %META: 78.8 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.1 %其他: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊斯兰堡: 0.4 %伊斯兰堡: 0.4 %保定: 0.3 %保定: 0.3 %北京: 2.9 %北京: 2.9 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 1.6 %台州: 1.6 %合肥: 0.6 %合肥: 0.6 %周口: 0.1 %周口: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.5 %哈尔科夫: 1.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.6 %大连: 0.6 %天津: 0.1 %天津: 0.1 %娄底: 0.1 %娄底: 0.1 %安德森: 0.4 %安德森: 0.4 %宜昌: 0.4 %宜昌: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 1.7 %张家口: 1.7 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 1.0 %成都: 1.0 %拉帕汉诺克县: 0.1 %拉帕汉诺克县: 0.1 %新加坡: 0.4 %新加坡: 0.4 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.1 %普赖恩维尔: 0.1 %杭州: 1.0 %杭州: 1.0 %梧州: 0.1 %梧州: 0.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.9 %沃思堡: 0.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %淄博: 1.7 %淄博: 1.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.6 %湖州: 0.6 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 42.2 %芒廷维尤: 42.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 13.2 %西宁: 13.2 %西安: 0.6 %西安: 0.6 %诺沃克: 4.1 %诺沃克: 4.1 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.6 %运城: 1.6 %遵义: 0.4 %遵义: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %青岛: 0.7 %青岛: 0.7 %其他其他ChinaUnited States上海东莞临汾丹东伊斯兰堡保定北京南京南通台州合肥周口哈密哈尔滨哈尔科夫嘉兴大连天津娄底安德森宜昌常州常德广州廊坊张家口张家界徐州德阳惠州成都拉帕汉诺克县新加坡昆明晋城普赖恩维尔杭州梧州武汉沃思堡沈阳洛阳济南淄博深圳温州湖州漯河烟台班加罗尔石家庄秦皇岛绵阳芒廷维尤芝加哥苏州荆州衢州西宁西安诺沃克贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1038) PDF downloads(50) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return