Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical method for fast optimization of rectangular transition structure in folded waveguide devices[J]. High Power Laser and Particle Beams, 2015, 27: 053101. doi: 10.11884/HPLPB201527.053101
Citation: Ye Jun, Li Sicheng, Zhang Yang, et al. 3 kW linewidth- and wavelength-tunable high-power fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 111002. doi: 10.11884/HPLPB202133.210506

3 kW linewidth- and wavelength-tunable high-power fiber laser

doi: 10.11884/HPLPB202133.210506
  • Received Date: 2021-10-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-24
  • Publish Date: 2021-11-15
  • Due to the great application potential in various fields such as spectral beam combination, photoacoustic spectroscopy and nonlinear frequency conversion, high-power spectrum-tunable fiber lasers have gained much attention in recent years. Based on a spectrum-flexible superfluorescent fiber source and the well-known master-oscillator power amplifier structure, we have demonstrated a 3 kW linewidth- and wavelength-tunable high-power fiber laser. The output central wavelength of the fiber laser can be tuned over 1065−1085 nm, and the 3 dB linewidth is adjustable over 2.4−13.8 nm.

  • [1]
    Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [2]
    Webber M E, Pushkarsky M, Patel C K. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers[J]. Applied Optics, 2003, 42(12): 2119-2126. doi: 10.1364/AO.42.002119
    [3]
    Wu Hanshuo, Wang Peng, Song Jiaxin, et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 2018, 26(5): 6446-6455. doi: 10.1364/OE.26.006446
    [4]
    Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [5]
    王泽晖, 肖起榕, 王雪娇, 等. 国产光纤实现同带抽运3000W激光输出[J]. 物理学报, 2018, 67:024205. (Wang Zehui, Xiao Qirong, Wang Xuejiao, et al. 3000 W tandem pumped all-fiber laser based on domestic fiber[J]. Acta Physica Sinica, 2018, 67: 024205 doi: 10.7498/aps.67.20171676
    [6]
    Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9(5): 1506107. doi: 10.1109/JPHOT.2017.2744803
    [7]
    林傲祥, 湛欢, 王瑜英, 等. 国产泵浦增益一体化复合功能激光光纤实现8.74 kW激光输出[J]. 强激光与粒子束, 2018, 30:010101. (Lin Aoxiang, Zhan Huan, Wang Yuying, et al. 8.74 kW (8+1) GT-wave fiber amplifier[J]. High Power Laser and Particle Beams, 2018, 30: 010101 doi: 10.11884/HPLPB201830.170466
    [8]
    陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001. (Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [9]
    Liu Yakun, Su Rongtao, Ma Pengfei, et al. 1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213-4218. doi: 10.1364/AO.56.004213
    [10]
    Li Zhe, Li Gang, Gao Qi, et al. Kilowatt-level tunable all-fiber narrowband superfluorescent fiber source with 40nm tuning range[J]. Optics Express, 2020, 28(7): 10378-10385. doi: 10.1364/OE.387405
    [11]
    Tian Jiading, Xiao Qirong, Li Dan, et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 2020, 38(6): 1461-1467. doi: 10.1109/JLT.2019.2954536
    [12]
    Yagodkin R, Platonov N, Yusim A, et al. >1.5kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[C]//Proc of SPIE. 2015: 972807.
    [13]
    Ye Jun, Xu Jiangming, Zhang Yang, et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 2019, 37(13): 3113-3118. doi: 10.1109/JLT.2019.2911007
    [14]
    Ye Jun, Fan Chenchen, Xu Jiangming, et al. 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics[J]. High Power Laser Science and Engineering, 2021, 9: e55. doi: 10.1017/hpl.2021.43
    [15]
    Yin Lu, Han Zhigang, Shen Hua, et al. Suppression of inter-modal four-wave mixing in high-power fiber lasers[J]. Optics Express, 2018, 26(12): 15804-15818. doi: 10.1364/OE.26.015804
    [16]
    Liu Wei, Ma Pengfei, Zhou Pu, et al. Spectral property optimization for a narrow-band-filtered superfluorescent fiber source[J]. Laser Physics Letters, 2018, 15: 025103. doi: 10.1088/1612-202X/aa877a
  • Relative Articles

    [1]Qian Kun, Yang Junyan, Yu Yue, Zhao Dong, Rong Shenghui. Infrared target tracking based on selective convolution features[J]. High Power Laser and Particle Beams, 2019, 31(9): 093202. doi: 10.11884/HPLPB201931.190133
    [2]Cai Qing, Liu Huiying, Zhou Sanping, Sun Jingfeng. Adaptive level set model based on local and global intensity information for image segmentation[J]. High Power Laser and Particle Beams, 2017, 29(02): 021003. doi: 10.11884/HPLPB201729.160432
    [3]Qin Hanlin, Zeng Qingjie, Li Jia, Zhou Huixin, Yan Xiang, Han Jiaojiao, Lv Enlong. Low-contrast infrared image real-time enhancement based on singular value nonlinear correction[J]. High Power Laser and Particle Beams, 2015, 27(01): 011007. doi: 10.11884/HPLPB201527.011007
    [4]You Anqing, Wang Lei, Zhang Rong, Song Haifeng. Detecting approximately-circular object in image[J]. High Power Laser and Particle Beams, 2015, 27(12): 121004. doi: 10.11884/HPLPB201527.121004
    [5]Ling Qiang, Huang Shucai, Wu Xiao, Zhong Yu. Infrared small target detection based on kernel anisotropic diffusion[J]. High Power Laser and Particle Beams, 2015, 27(01): 011014. doi: 10.11884/HPLPB201527.011014
    [6]Qu Shiru, Yang Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(05): 051007. doi: 10.11884/HPLPB201527.051007
    [7]Wang Xiaoyang, Peng Zhenming, Zhang Ping, Meng Yeming. Infrared small dim target detection based on local contrast combined with region saliency[J]. High Power Laser and Particle Beams, 2015, 27(09): 091005. doi: 10.11884/HPLPB201527.091005
    [8]Wen Nu, Yang Shizhi, Cui Shengcheng, Cheng Wei. Adaptive dual-tree complex wavelet algorithm for remote sensing image restoration[J]. High Power Laser and Particle Beams, 2014, 26(10): 101003. doi: 10.11884/HPLPB201426.101003
    [9]Ma Ke, Peng Zhenming, He Yanmin, Gao Yuan, Zhang Ping. An improved method for dim infrared target detection with nonsubsampled Contourlet transform[J]. High Power Laser and Particle Beams, 2013, 25(11): 2811-2815. doi: 10.3788/HPLPB20132511.2811
    [10]Bai Honggang, Zhang Jianqi, Wang Xiaorui. Infrared complex background clutter suppression algorithm based on wave atom transform[J]. High Power Laser and Particle Beams, 2013, 25(01): 37-41. doi: 10.3788/HPLPB20132501.0037
    [11]Jing Liang, Peng Zhenming, He Yanmin, Pu Tian. Infrared dim target detection based on anisotropic SUSAN filtering[J]. High Power Laser and Particle Beams, 2013, 25(09): 2208-2212. doi: 10.3788/HPLPB20132509.2208
    [12]Qin Hanlin, Huang Yang, Yao Keke, Zhou Huixin, Liu ShangQian. Multi-scale kernel local normalization for infrared image background suppression[J]. High Power Laser and Particle Beams, 2012, 24(05): 1063-1066. doi: 10.3788/HPLPB20122405.1063
    [13]huang yonglin, ye yutang, qiao naosheng, chen zhenlong. Infrared image segmentation based on fast fuzzy C-means clustering[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [14]zhang libao, li dongling, yu xianchuan, wang pengfei, cai lei. Region-of-interest image edge detection based on histogram[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [15]li fan, liu shangqian, hong ming, qin hanlin. Algorithm of infrared image segmentation based on ant colony[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [16]chi fangting, li bo, liu yiyang, chen sufen, jiang bo. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [17]qin hanlin, zhou huixin, liu shangqian, li fan. Dim and small target background suppression using bilateral filtering[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [18]liu chang-song, yan gao-shi, cai jian-rong. A new search algorithm for fast block-matching motion estimation[J]. High Power Laser and Particle Beams, 2007, 19(10): 0- .
    [19]fang liang, lu jia-jia, ye yu-tang, yang xian-ming, cheng zhi-qiang. New method for edge detection of infrared images based on Mumford-Shah model[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [20]cheng yong-dong, li jia-yin. Study on microwave self-adapting equalizer for amplifier of multiple-beam klystron[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
  • Cited by

    Periodical cited type(3)

    1. 潘强,印鉴. 基于权重约束决策的图像增强算法. 控制工程. 2018(11): 2017-2021 .
    2. 王新赛,周丰俊,郑磊,贺菁. 红外成像技术在城市地下空间防灾监测与应急搜救中的应用发展对策. 中国工程科学. 2017(06): 92-99 .
    3. 秦翰林,曾庆杰,李佳,周慧鑫,延翔,韩姣姣,吕恩龙. 奇异值非线性修正的低对比度红外图像实时增强. 强激光与粒子束. 2015(01): 59-62 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.5 %FULLTEXT: 22.5 %META: 66.8 %META: 66.8 %PDF: 10.7 %PDF: 10.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %其他: 0.2 %其他: 0.2 %China: 0.1 %China: 0.1 %Falls Church: 0.1 %Falls Church: 0.1 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.1 %United States: 0.1 %上海: 3.1 %上海: 3.1 %东莞: 0.6 %东莞: 0.6 %中山: 0.5 %中山: 0.5 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %乐山: 0.4 %乐山: 0.4 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 1.0 %北京: 1.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南充: 0.1 %南充: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.5 %厦门: 0.5 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 2.0 %天津: 2.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %巴彦淖尔: 0.2 %巴彦淖尔: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.7 %常德: 0.7 %广州: 0.2 %广州: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 1.4 %成都: 1.4 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %武汉: 1.1 %武汉: 1.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.6 %深圳: 0.6 %温州: 0.2 %温州: 0.2 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 1.7 %漯河: 1.7 %漳州: 0.1 %漳州: 0.1 %烟台: 0.4 %烟台: 0.4 %珠海: 0.6 %珠海: 0.6 %眉山: 1.5 %眉山: 1.5 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 2.5 %绵阳: 2.5 %艾姆斯: 0.4 %艾姆斯: 0.4 %芒廷维尤: 24.5 %芒廷维尤: 24.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 26.2 %西宁: 26.2 %西安: 1.4 %西安: 1.4 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 6.7 %诺沃克: 6.7 %贵阳: 0.7 %贵阳: 0.7 %费利蒙: 0.1 %费利蒙: 0.1 %赣州: 0.5 %赣州: 0.5 %运城: 1.1 %运城: 1.1 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.6 %郑州: 0.6 %重庆: 0.2 %重庆: 0.2 %镇江: 0.1 %镇江: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.6 %长沙: 0.6 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaFalls ChurchSeattleUnited States上海东莞中山临汾丹东乌鲁木齐乐山伊利诺伊州保定兰州北京十堰南京南充南昌南通博阿努瓦厦门台北台州合肥吉林哈尔滨嘉兴天津宁波安康巴彦淖尔常州常德广州开封张家口成都扬州昆明晋城普洱杭州武汉沈阳济南深圳温州渭南湖州漯河漳州烟台珠海眉山石家庄福州秦皇岛绵阳艾姆斯芒廷维尤芝加哥苏州荆州莆田衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙赣州运城遵义邯郸郑州重庆镇江长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article views (1195) PDF downloads(124) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return