Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Hu Xingguang, Zhong Jike, Li Hua, et al. Test of 100kA vacuum circuit breaker based on artificial current zero for quench protection[J]. High Power Laser and Particle Beams, 2022, 34: 116003. doi: 10.11884/HPLPB202234.210552
Citation: Hu Xingguang, Zhong Jike, Li Hua, et al. Test of 100kA vacuum circuit breaker based on artificial current zero for quench protection[J]. High Power Laser and Particle Beams, 2022, 34: 116003. doi: 10.11884/HPLPB202234.210552

Test of 100kA vacuum circuit breaker based on artificial current zero for quench protection

doi: 10.11884/HPLPB202234.210552
  • Received Date: 2021-12-08
  • Accepted Date: 2022-06-16
  • Rev Recd Date: 2022-06-03
  • Available Online: 2022-06-17
  • Publish Date: 2022-09-20
  • Quench protection system plays an important role in superconducting magnet power supply system, as it can transfer and consume magnet energy rapidly. In the project of Comprehensive Research Facility for Fusion Technology (CRAFT), the technical requirement of breaking 100 kA direct current (DC) is proposed for the quench protection system, in which the vacuum circuit breaker is used as the switch of transfer branch. In this paper, a 100 kA DC vacuum circuit breaker with series structure is designed for the CRAFT project’s quench protection system, and the prototype is manufactured. In field test, with the cooperation of artificial zero-point circuit, the vacuum circuit has completed the 100 kA (DC) breaking test successfully.
  • loading
  • [1]
    Huang Ronglin, Fu Peng, Zhu Yinfeng, et al. Design and analysis of a high power supply for the research system of superconducting magnets[J]. Fusion Engineering and Design, 2019, 147: 111248. doi: 10.1016/j.fusengdes.2019.111248
    [2]
    Mitchell N, Devred A, Libeyre P, et al. The ITER magnets: design and construction status[J]. IEEE Transactions on Applied Superconductivity, 2012, 22: 4200809. doi: 10.1109/TASC.2011.2174560
    [3]
    Gavrilin A V, Eyssa Y M. Modeling of electromagnetic and thermal diffusion in a large pure aluminum stabilized superconductor under quench[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2599-2602. doi: 10.1109/77.920400
    [4]
    Fu Peng, Song Zhiquan, Gao Ge, et al. Quench protection of the poloidal field superconducting coil system for the EAST tokamak[J]. Nuclear Fusion, 2006, 46(3): S85-S89. doi: 10.1088/0029-5515/46/3/S11
    [5]
    江加福, 刘小宁, 许留伟, 等. 基于EAST超导纵场线圈的换流分析[J]. 高电压技术, 2009, 35(1):186-191 doi: 10.13336/j.1003-6520.hve.2009.01.010

    Jiang Jiafu, Liu Xiaoning, Xu Liuwei, et al. Analysis of discharge based on toroidal field coils of EAST[J]. High Voltage Engineering, 2009, 35(1): 186-191 doi: 10.13336/j.1003-6520.hve.2009.01.010
    [6]
    Song I, Roshal A, Tanchuk V, et al. The fast discharge system of ITER superconducting magnets[C]//Proceedings of 2011 International Conference on Electrical Machines and Systems, 2011: 1-6.
    [7]
    李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展[J]. 中国电机工程学报, 2016, 36(s1):233-239 doi: 10.13334/j.0258-8013.pcsee.161406

    Li Hua, Song Zhiquan, Wang Shusheng, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device[J]. Proceedings of the CSEE, 2016, 36(s1): 233-239 doi: 10.13334/j.0258-8013.pcsee.161406
    [8]
    宋执权, 傅鹏, 汤伦军, 等. EAST极向场电源失超保护系统的设计及模拟实验[J]. 核聚变与等离子体物理, 2007, 27(1):28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006

    Song Zhiquan, Fu Peng, Tang Lunjun, et al. Design of the quench protection system of the EAST PFPS and its simulation[J]. Nuclear Fusion and Plasma Physics, 2007, 27(1): 28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006
    [9]
    Hu Xingguang, Li Hua, Song Zhiquan, et al. Concept design of 100 kA hybrid DC breaker on China fusion engineering test reactor[J]. Fusion Engineering and Design, 2020, 158: 111740. doi: 10.1016/j.fusengdes.2020.111740
    [10]
    朱军, 李波, 阮江军, 等. 基于人工过零技术的直流真空分断过程分析及验证[J]. 电机与控制学报, 2019, 23(1):63-72 doi: 10.15938/j.emc.2019.01.008

    Zhu Jun, Li Bo, Ruan Jiangjun, et al. Analysis and test for the DC vacuum interruption process based on the artificial current zero technology[J]. Electric Machines and Control, 2019, 23(1): 63-72 doi: 10.15938/j.emc.2019.01.008
    [11]
    李博, 彭振东, 沙新乐, 等. 直流真空断路器强迫换流分断的可靠性[J]. 高电压技术, 2019, 45(8):2486-2494 doi: 10.13336/j.1003-6520.hve.20190410018

    Li Bo, Peng Zhendong, Sha Xinle, et al. Reliability of forced commutation breaking by DC vacuum circuit breaker[J]. High Voltage Engineering, 2019, 45(8): 2486-2494 doi: 10.13336/j.1003-6520.hve.20190410018
    [12]
    Zhang Yingkui, Shi Zongqian, Wang Qiaosen, et al. Experimental investigation on HVDC vacuum circuit breaker based on artificial current zero[C]//Proceedings of the 27th International Symposium on Discharges and Electrical Insulation in Vacuum, 2016: 1-4.
    [13]
    苑舜, 王毅, 王季梅. 真空断路器触头分离时刻对开断性能影响的试验研究[J]. 中国电机工程学报, 1993, 13(5):10-13 doi: 10.13334/j.0258-8013.pcsee.1993.05.002

    Yuan Shun, Wang Yi, Wang Jimei. Effects of separating moment of electrodes on interruption ability in vacuum circuit breaker[J]. Proceedings of the CSEE, 1993, 13(5): 10-13 doi: 10.13334/j.0258-8013.pcsee.1993.05.002
    [14]
    王建华, 耿英三. 刘志远. 输电等级单断口真空断路器理论及其技术[M]. 北京: 机械工业出版社, 2017

    Wang Jianhua, Geng Yingsan, Liu Zhiyuan. The theory and technology on electrical transmission voltage level single break vacuum interrupter[M]. Beijing: China Machine Press, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (761) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return