Shi Yiping, Yi Chaolong, Fan Yajun, et al. Design and experiments on a kind of high-power coplanar-feed impulse radiating antenna[J]. High Power Laser and Particle Beams, 2016, 28: 043001. doi: 10.11884/HPLPB201628.123001
Citation: Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564

Development of a 240 kJ modularized pulsed power supply

doi: 10.11884/HPLPB202234.210564
  • Received Date: 2021-12-20
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-05-21
  • Publish Date: 2022-06-17
  • The space plasma environment research facility (SPERF) is used to simulate the space magnetic field and plasma environment on earth. To generate a pulse current across the 3.5 μH, 0.8 mΩ toroidal field (TF) coils, a modularized capacitor-based pulsed power supply (PPS) was built. The rise time of the pulse current was approximately 130 μs, and the peak current was 260 kA. To avoid damage to the PPS when the coil load was short-circuited, the circuit parameters of the PPS, such as the number of modules, the inductance of the protection inductor, were calculated based on current waveform requirements and the maximum ratings of the thyristor switch. Since the inductance of the coil load was relatively small, the output cable was used as both the transmission line and the protection inductor, and a 4-module PPS was designed and fabricated. Simulation results indicate that the 4-module PPS design meets the demand of both the current waveform and the maximum ratings of the thyristor switch, and the discharge test further proves the output current waveform of the PPS agrees with the simulation results.
  • [1]
    Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985.
    [2]
    Melnik P A, Bushnell A H, Sieck P E, et al. Design of 5.5MJ charge dump power supply for the PPPL FLARE experiment[C]//2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016.
    [3]
    Gekelman W, De Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101
    [4]
    E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): Modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923
    [5]
    E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725
    [6]
    Wu Biao. Vlasov equation of plasma in magnetic field[J]. Journal of Physics A: Mathematical and General, 1999, 32(31): 5835-5844. doi: 10.1088/0305-4470/32/31/308
    [7]
    Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007.
    [8]
    Portugall O, Lecouturier F, Marquez J, et al. Pulsed magnetic fields in Toulouse – past, present and future[J]. Physica B: Condensed Matter, 2001, 294/295: 579-584. doi: 10.1016/S0921-4526(00)00724-9
    [9]
    Debray F, Frings P. State of the art and developments of high field magnets at the "Laboratoire National des Champs Magnétiques Intenses"[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002
    [10]
    Perenboom J A A J, Maan J C, Van Breukelen M R, et al. Developments at the high field magnet laboratory in Nijmegen[J]. Journal of Low Temperature Physics, 2013, 170(5/6): 520-530.
    [11]
    Sitzman A, Surls D, Mallick J. Design, construction, and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Transactions on Magnetics, 2007, 43(1): 270-274. doi: 10.1109/TMAG.2006.887685
    [12]
    Lee B, An S, Kim S H, et al. Operation of a 2.4-MJ pulsed power system for railgun[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2886-2890. doi: 10.1109/TPS.2013.2295225
    [13]
    Ding Hongfa, Jiang Chengxi, Ding Tonghai, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785
    [14]
    Lü Yiliang, Li Liang. Design on the protection inductor for the capacitor bank of Wuhan Pulsed High Magnetic Field facility[C]//2008 International Conference on Electrical Machines and Systems. 2008.
    [15]
    彭波, 林福昌, 黄福勇, 等. 储能电容器组保护电感结构与保护方法的研究[J]. 高电压器, 2012, 48(6):48-52,55. (Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52,55

    Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52, 55
    [16]
    韩旻, 邹晓兵, 张贵新, 等. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2020

    Hank Min, Zou Xiaobing, Zhang Guixin. Pulse power technology base[M]. Beijing: Tsinghua University Press, 2010
    [17]
    蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013

    Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013
    [18]
    Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850
  • Relative Articles

    [1]Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406
    [2]Qi Xiongfei, Hou Liqiang, Du Zhengyu, Cao Xuewu. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32(5): 056002. doi: 10.11884/HPLPB202032.190420
    [3]Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008
    [4]Tang Mi, Liu Cangli, Li Ping, Zhong Min, Bai Jinsong, Xie Long. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012, 24(09): 2203-2206. doi: 10.3788/HPLPB20122409.2203
    [5]li linbo, lu xingqiang, cao huabao, li zhenghong, xu rongkun, yang jianlun. Simulation analysis for backward-reflected laser in high power laser amplifier[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [6]gu xiaowei, meng lin, li jiayin, sun yiqin, yu xinhua. Three-dimensional numerical simulation of microhollow cathode discharge model[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [7]zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [8]peng tang-chao, shu xiao-jian, dou yu-huan. Numerical simulations of chirped pulse amplification at FEL[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [9]ma qing-li, tang shi-biao, zou ji-wei. Numerical simulation of distribution of recoil proton in plastic scintillating fiber irradiated by high-energy neutron[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [10]tian dong-bin, yuan xiao-dong, zu xiao-tao, wang bi-yi, xu shi-zhen, guo yuan-jun, jiang xiao-dong, li xu-ping, zheng wan-guo. Numerical simulation of light intensity distribution in vicinity of defect on fused silica subsurface[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [11]ge ming-li, liu qing-xiang, li xiang-qiang, zhao yun-fu. Numerical simulation and experimental research of coaxial-inserting-fin phase shifter[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [12]qian xian-mei, zhu wen-yue, rao rui-zhong. Simulation of effects of beam wander on scintillation index of a focused Gaussian-beam[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [13]zhang song-bao, tang bin. Simulation and experiment of neutron radiography[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [14]zhang fa-qiang, yang jian-lun, li zheng-hong, chen fa-xin, ying chun-tong, liu guang-jun. Numerical simulation of high energy neutron radiography[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]sun jun, liu guo-zhi, lin yu-zheng, xiao ren-zhen. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [16]tu bo, jiang jian-feng, zhou tang-jian, cui ling-ling, yao zhen-yu. Numerical simulation of medium temperature and stress for high power disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [17]he feng, su jian-cang, li yong-dong, liu chun-liang, sun jian. Numerical simulation of semiconductor opening switch[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [18]phyzhang guo ping, zhang tan xin, zheng wu di. Test of simulation by experiments of Nelike Ge Xray lasers[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [19]wang li, li hong-fu, niu xin-jian, deng xue. Analysis of the influence of the magnetic field profiles on the high-power gyrotron's magnetic injection gun[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [20]zhu peng-fei, qian lie-jia, lin zun-qi. Numerical studies of characteristic of optical parametric chirped pulse amplification[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.5 %FULLTEXT: 31.5 %META: 62.2 %META: 62.2 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.6 %其他: 0.6 %Seattle: 0.2 %Seattle: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %丹东: 0.2 %丹东: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.6 %保定: 0.6 %北京: 3.1 %北京: 3.1 %北伯根: 0.2 %北伯根: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南里奥格兰德州: 0.7 %南里奥格兰德州: 0.7 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %天津: 0.2 %天津: 0.2 %安康: 0.2 %安康: 0.2 %宿迁: 0.2 %宿迁: 0.2 %常德: 0.6 %常德: 0.6 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 2.0 %成都: 2.0 %扬州: 0.2 %扬州: 0.2 %晋城: 0.2 %晋城: 0.2 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.2 %沈阳: 0.2 %海口: 0.2 %海口: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.6 %温州: 0.6 %湖州: 0.9 %湖州: 0.9 %漯河: 1.1 %漯河: 1.1 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 48.1 %芒廷维尤: 48.1 %衢州: 0.9 %衢州: 0.9 %西宁: 10.6 %西宁: 10.6 %西安: 0.9 %西安: 0.9 %诺沃克: 6.7 %诺沃克: 6.7 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.2 %达州: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.6 %重庆: 0.6 %长沙: 0.9 %长沙: 0.9 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %马哈达翁达: 0.7 %马哈达翁达: 0.7 %其他其他Seattle上海东莞丹东乌鲁木齐保定北京北伯根华盛顿州南里奥格兰德州博阿努瓦台州合肥哈尔滨哥伦布天津安康宿迁常德广州张家口成都扬州晋城杭州格兰特县武汉沈阳海口深圳温州湖州漯河烟台石家庄秦皇岛绵阳芒廷维尤衢州西宁西安诺沃克贵阳达州运城遵义邯郸郑州重庆长沙青岛鞍山马哈达翁达

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (764) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return