Chen Xi, Fu Jiwei, Wu Qiang, et al. Evaluation method for shielding effectiveness cabins in complex transportable systems[J]. High Power Laser and Particle Beams, 2016, 28: 113203. doi: 10.11884/HPLPB201628.160116
Citation: Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015. doi: 10.11884/HPLPB202234.210564

Development of a 240 kJ modularized pulsed power supply

doi: 10.11884/HPLPB202234.210564
  • Received Date: 2021-12-20
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-05-21
  • Publish Date: 2022-06-17
  • The space plasma environment research facility (SPERF) is used to simulate the space magnetic field and plasma environment on earth. To generate a pulse current across the 3.5 μH, 0.8 mΩ toroidal field (TF) coils, a modularized capacitor-based pulsed power supply (PPS) was built. The rise time of the pulse current was approximately 130 μs, and the peak current was 260 kA. To avoid damage to the PPS when the coil load was short-circuited, the circuit parameters of the PPS, such as the number of modules, the inductance of the protection inductor, were calculated based on current waveform requirements and the maximum ratings of the thyristor switch. Since the inductance of the coil load was relatively small, the output cable was used as both the transmission line and the protection inductor, and a 4-module PPS was designed and fabricated. Simulation results indicate that the 4-module PPS design meets the demand of both the current waveform and the maximum ratings of the thyristor switch, and the discharge test further proves the output current waveform of the PPS agrees with the simulation results.
  • [1]
    Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985.
    [2]
    Melnik P A, Bushnell A H, Sieck P E, et al. Design of 5.5MJ charge dump power supply for the PPPL FLARE experiment[C]//2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016.
    [3]
    Gekelman W, De Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101
    [4]
    E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): Modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923
    [5]
    E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725
    [6]
    Wu Biao. Vlasov equation of plasma in magnetic field[J]. Journal of Physics A: Mathematical and General, 1999, 32(31): 5835-5844. doi: 10.1088/0305-4470/32/31/308
    [7]
    Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007.
    [8]
    Portugall O, Lecouturier F, Marquez J, et al. Pulsed magnetic fields in Toulouse – past, present and future[J]. Physica B: Condensed Matter, 2001, 294/295: 579-584. doi: 10.1016/S0921-4526(00)00724-9
    [9]
    Debray F, Frings P. State of the art and developments of high field magnets at the "Laboratoire National des Champs Magnétiques Intenses"[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002
    [10]
    Perenboom J A A J, Maan J C, Van Breukelen M R, et al. Developments at the high field magnet laboratory in Nijmegen[J]. Journal of Low Temperature Physics, 2013, 170(5/6): 520-530.
    [11]
    Sitzman A, Surls D, Mallick J. Design, construction, and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Transactions on Magnetics, 2007, 43(1): 270-274. doi: 10.1109/TMAG.2006.887685
    [12]
    Lee B, An S, Kim S H, et al. Operation of a 2.4-MJ pulsed power system for railgun[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2886-2890. doi: 10.1109/TPS.2013.2295225
    [13]
    Ding Hongfa, Jiang Chengxi, Ding Tonghai, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785
    [14]
    Lü Yiliang, Li Liang. Design on the protection inductor for the capacitor bank of Wuhan Pulsed High Magnetic Field facility[C]//2008 International Conference on Electrical Machines and Systems. 2008.
    [15]
    彭波, 林福昌, 黄福勇, 等. 储能电容器组保护电感结构与保护方法的研究[J]. 高电压器, 2012, 48(6):48-52,55. (Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52,55

    Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52, 55
    [16]
    韩旻, 邹晓兵, 张贵新, 等. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2020

    Hank Min, Zou Xiaobing, Zhang Guixin. Pulse power technology base[M]. Beijing: Tsinghua University Press, 2010
    [17]
    蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013

    Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013
    [18]
    Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850
  • Relative Articles

    [1]Zhang Jintao, Wang Yingqiao, Xia Yuyang, Li Qing, Li Chunlin, Fan Zhenyuan, Cai Yiming. Design of 5 MW neutral beam high voltage power supply system for HL-3 device[J]. High Power Laser and Particle Beams, 2025, 37(3): 035013. doi: 10.11884/HPLPB202537.240431
    [2]Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, Zhang Ming. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36(2): 025011. doi: 10.11884/HPLPB202436.230159
    [3]Cui Qinglong, Wei Jianglong, Xie Yahong, Liang Lizhen, Xie Yuanlai, Hu Chundong. Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system[J]. High Power Laser and Particle Beams, 2023, 35(11): 114001. doi: 10.11884/HPLPB202335.230179
    [4]Shu Xianlai, Liu Zhimin, Xie Yahong, Wang Na, Liu Wei, Wei Jianglong, Cui Qinglong, Pan Junjun, Chen Shiyong, Hu Chundong. Research on beam feedback control of negative ion source based on RF power regulation[J]. High Power Laser and Particle Beams, 2022, 34(11): 116002. doi: 10.11884/HPLPB202234.220098
    [5]Zhang Jintao, Yang Puqiong, Wei Huiling, Yu Peixuan, Luo Huaiyu, Geng Shaofei, Zhou Bowen, Wan Yinxiang, Cao Jianyong. Research on optimization of MW level neutral beam injection arc power supply system[J]. High Power Laser and Particle Beams, 2021, 33(8): 085002. doi: 10.11884/HPLPB202133.210026
    [6]Zhao Lu, Pan Shengmin, Huang Yiyun, Yang Zhigang. Integrated protection system of EAST-NBI high voltage power supply[J]. High Power Laser and Particle Beams, 2017, 29(06): 065010. doi: 10.11884/HPLPB201729.160452
    [7]Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695
    [8]Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002
    [9]Sheng Peng, Hu Chundong, Song Shihua, Liu Sheng, NBI Team. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26(10): 104003. doi: 10.11884/HPLPB201426.104003
    [10]Tao Ling, Hu Chundong, Xie Yuanlai, Xu Yongjian. Engineering design of ion dump for EAST neutral beam injection system[J]. High Power Laser and Particle Beams, 2013, 25(10): 2687-2692. doi: 10.3788/HPLPB20132510.2687
    [11]Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023
    [12]Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015
    [13]Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983
    [14]Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006
    [15]Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970
    [16]Yi Hengguan, Zeng Zhi, Wang Xuewu, Cheng Jianping, Li Junli. Simulation of parallel muons transmission imaging using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2987-2990. doi: 10.3788/HPLPB20122412.2987
    [17]zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [18]fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [19]wang haitian, li ge, cao liang. Snubber for EAST neutral beam injector[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [20]chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
  • Cited by

    Periodical cited type(5)

    1. 周纭加,赵民,付继伟,龙中权. 基于粒子群算法的火箭抗雷电加固设计. 兵器装备工程学报. 2023(03): 281-287 .
    2. 石广军,夏睿. 直升机复杂机体结构屏蔽性能测试方法研究. 安全与电磁兼容. 2021(03): 31-33+40 .
    3. 李兴福,郭琦. 基于隶属度函数的飞机结构防护有效性分析. 现代制造技术与装备. 2020(11): 117-120 .
    4. 刘强,徐勇,孟雪松,郑宇腾,闫丽萍,周海京. 基于CP-FDTD的复杂细缝屏蔽效能分析方法. 强激光与粒子束. 2019(10): 55-60 . 本站查看
    5. 龙中权,赵民,付继伟,陈曦,齐欢. 固体运载火箭抗强电磁脉冲优化设计方法. 宇航学报. 2018(10): 1141-1147 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 72.3 %META: 72.3 %PDF: 12.3 %PDF: 12.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 3.0 %其他: 3.0 %China: 0.1 %China: 0.1 %Falls Church: 0.0 %Falls Church: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.7 %[]: 1.7 %三明: 0.0 %三明: 0.0 %三门峡: 0.0 %三门峡: 0.0 %上海: 5.6 %上海: 5.6 %东京: 0.1 %东京: 0.1 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %乐山: 0.0 %乐山: 0.0 %伦敦: 0.6 %伦敦: 0.6 %保定: 0.4 %保定: 0.4 %光州: 0.0 %光州: 0.0 %兰州: 0.2 %兰州: 0.2 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %北京: 7.7 %北京: 7.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南充: 0.2 %南充: 0.2 %南昌: 0.5 %南昌: 0.5 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 1.2 %合肥: 1.2 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 2.1 %大连: 2.1 %天水: 0.0 %天水: 0.0 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %奥斯汀: 0.2 %奥斯汀: 0.2 %安庆: 0.0 %安庆: 0.0 %安康: 0.2 %安康: 0.2 %官坑: 0.0 %官坑: 0.0 %宜昌: 0.0 %宜昌: 0.0 %宜春: 0.1 %宜春: 0.1 %宣城: 0.4 %宣城: 0.4 %宿迁: 0.0 %宿迁: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %岳阳: 0.1 %岳阳: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.2 %张家口: 1.2 %张家界: 0.4 %张家界: 0.4 %德黑兰: 0.2 %德黑兰: 0.2 %悉尼: 0.1 %悉尼: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.0 %扬州: 0.0 %新余: 0.0 %新余: 0.0 %新泽西州: 0.1 %新泽西州: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %曼彻斯特: 0.0 %曼彻斯特: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杜塞尔多夫: 0.3 %杜塞尔多夫: 0.3 %杭州: 0.9 %杭州: 0.9 %林肯: 0.6 %林肯: 0.6 %武汉: 0.5 %武汉: 0.5 %毕节: 0.0 %毕节: 0.0 %沈阳: 0.0 %沈阳: 0.0 %泰安: 0.0 %泰安: 0.0 %泰州: 0.1 %泰州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济宁: 0.1 %济宁: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 1.6 %深圳: 1.6 %温州: 0.2 %温州: 0.2 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.5 %湘潭: 0.5 %漯河: 0.5 %漯河: 0.5 %潜江: 0.0 %潜江: 0.0 %濮阳: 0.1 %濮阳: 0.1 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 1.8 %绵阳: 1.8 %罗莫朗坦朗特奈: 0.1 %罗莫朗坦朗特奈: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.2 %芝加哥: 0.2 %莫斯科: 0.2 %莫斯科: 0.2 %菏泽: 0.0 %菏泽: 0.0 %萨默维尔: 0.3 %萨默维尔: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.4 %衡阳: 0.4 %襄阳: 0.0 %襄阳: 0.0 %西宁: 21.6 %西宁: 21.6 %西安: 1.3 %西安: 1.3 %诺沃克: 1.8 %诺沃克: 1.8 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.0 %费利蒙: 0.0 %资阳: 0.0 %资阳: 0.0 %运城: 1.0 %运城: 1.0 %连云港: 0.0 %连云港: 0.0 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.5 %郑州: 0.5 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.3 %重庆: 0.3 %铁岭: 0.2 %铁岭: 0.2 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 2.6 %长沙: 2.6 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.1 %驻马店: 0.1 %其他其他ChinaFalls ChurchSeattleTaichungUnited States[]三明三门峡上海东京东莞中山临汾丹东丽水乐山伦敦保定光州兰州兴安盟内江加利福尼亚州北京十堰南京南充南昌南通台北台州合肥吉林呼和浩特哈尔滨哥伦布喀什嘉兴大连天水天津太原奥斯汀安庆安康官坑宜昌宜春宣城宿迁密蘇里城岳阳巴音郭楞常州常德广州廊坊张家口张家界德黑兰悉尼慕尼黑成都扬州新余新泽西州无锡昆明晋城普洱曼彻斯特朝阳杜塞尔多夫杭州林肯武汉毕节沈阳泰安泰州洛杉矶洛阳济宁淄博深圳温州渭南湖州湘潭漯河潜江濮阳石家庄秦皇岛约翰内斯堡绵阳罗莫朗坦朗特奈芒廷维尤芝加哥莫斯科菏泽萨默维尔衡水衡阳襄阳西宁西安诺沃克贵港贵阳费利蒙资阳运城连云港遵义邯郸郑州都伯林重庆铁岭锦州长春长沙青岛马鞍山驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (749) PDF downloads(82) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return