Citation: | Shao Yanhua, Feng Yupei, Zhang Xiaoqiang, et al. Using deep learning for surface defects identification of optical components[J]. High Power Laser and Particle Beams, 2022, 34: 112002. doi: 10.11884/HPLPB202234.220023 |
[1] |
林尊琪. 激光核聚变的发展[J]. 中国激光, 2010, 37(9):2202-2207 doi: 10.3788/CJL20103709.2202
Lin Zunqi. Progress of laser fusion[J]. Chinese Journal of Lasers, 2010, 37(9): 2202-2207 doi: 10.3788/CJL20103709.2202
|
[2] |
楚红雨. 基于机器视觉的高功率激光装置光学元件表面缺陷检测技术研究[D]. 重庆: 重庆大学, 2011: 21-42, 95-106
Chu Hongyu. Research on the detecting technology of surface optics defect for high-power laser device based on machine vision[D]. Chongqing: Chongqing University, 2011: 21-42, 95-106
|
[3] |
Sowers I F. Optical cleanliness specifications and cleanliness verification[C]//Proceedings of the 44th Annual Meeting of the International Symposium on Optical Science, Engineering, and Instrumentation. 1999: 525-530.
|
[4] |
史伟. 高精度洁净度检测方法研究[D]. 成都: 四川大学, 2000: 9-15
Shi Wei. Research on high precision purification testing methods[D]. Chengdu: Sichuan University, 2000: 9-15
|
[5] |
范勇, 陈念年, 高玲玲, 等. 大口径精密表面疵病的数字化检测系统[J]. 强激光与粒子束, 2009, 21(7):1032-1036
Fan Yong, Chen Niannian, Gao Lingling, et al. Digital detection system of surface defects for large aperture optical elements[J]. High Power Laser and Particle Beams, 2009, 21(7): 1032-1036
|
[6] |
汪凤全, 杨甬英, 孙丹丹. 精密表面缺陷的数字化检测系统研究[J]. 光学仪器, 2006, 28(3):71-75 doi: 10.3969/j.issn.1005-5630.2006.03.015
Wang Fengquan, Yang Yongying, Sun Dandan. Research of digital inspection system of precise surface defect[J]. Optical Instruments, 2006, 28(3): 71-75 doi: 10.3969/j.issn.1005-5630.2006.03.015
|
[7] |
朱小龙, 王翊, 谢志江, 等. 精密光学元件表面洁净度成像检测系统[J]. 西南交通大学学报, 2009, 44(6):958-962 doi: 10.3969/j.issn.0258-2724.2009.06.027
Zhu Xiaolong, Wang Yi, Xie Zhijiang, et al. Surface cleanliness level detection by imaging method for precision optical elements[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 958-962 doi: 10.3969/j.issn.0258-2724.2009.06.027
|
[8] |
付向文. 基于图像识别的透镜瑕疵检测系统关键技术研究[D]. 沈阳: 沈阳理工大学, 2014: 53-61
Fu Xiangwen. Research of the key technology on detection system of lens defect based on image recognition[D]. Shenyang: Shenyang Ligong University, 2014: 53-61
|
[9] |
冯博. 惯性约束聚变终端光学元件损伤在线检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 63-82
Feng Bo. Research on final optics damage online inspection technologies for ICF system[D]. Harbin: Harbin Institute of Technology, 2014: 63-82
|
[10] |
何小嵩, 张占文, 荣伟彬. 基于计算机视觉的微球缺陷检测及分类方法[J]. 强激光与粒子束, 2017, 29:084102 doi: 10.11884/HPLPB201729.170015
He Xiaosong, Zhang Zhanwen, Rong Weibin. Detection and classification of microspheres based on computer vision[J]. High Power Laser and Particle Beams, 2017, 29: 084102 doi: 10.11884/HPLPB201729.170015
|
[11] |
张文学, 王继红, 任戈. 基于相机阵列的光学组件缺陷在线检测方法[J]. 强激光与粒子束, 2020, 32:051001 doi: 10.11884/HPLPB202032.190444
Zhang Wenxue, Wang Jihong, Ren Ge. Optical elements defect online detection method based on camera array[J]. High Power Laser and Particle Beams, 2020, 32: 051001 doi: 10.11884/HPLPB202032.190444
|
[12] |
熊显名, 张乾坤, 秦祖军. 基于可见-近红外光谱的路面状况识别的研究[J]. 红外技术, 2021, 43(2):131-137
Xiong Xianming, Zhang Qiankun, Qin Zujun. Research on highway state detection based on visible-near-infrared spectrum[J]. Infrared Technology, 2021, 43(2): 131-137
|
[13] |
南哲锋. 基于机器视觉的轨道缺陷检测算法研究[D]. 兰州: 兰州交通大学, 2021: 38-48
Nan Zhefeng. Research on track defect detection algorithm based on machine vision[D]. Lanzhou: Lanzhou Jiaotong University, 2021: 38-48
|
[14] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
[15] |
Chollet F. Deep learning with python[M]. 2nd ed. New York: Manning, 2021: 20-26, 202-221.
|
[16] |
阿斯顿·张, 李沐, 扎卡里·C. 立顿, 等. 动手学深度学习[M]. 北京: 人民邮电出版社, 2019: 62-65
Zhang A, Li Mu, Lipton Z C, et al. Dive into deep learning[M]. Beijing: Posts & Telecom Press, 2019: 62-65
|
[17] |
黄俊, 张娜娜, 章惠. 基于优化LeNet-5的近红外图像中的静默活体人脸检测[J]. 红外技术, 2021, 43(9):845-851
Huang Jun, Zhang Nana, Zhang Hui. Silent live face detection in near-infrared images based on optimized LeNet-5[J]. Infrared Technology, 2021, 43(9): 845-851
|