Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039
Citation: Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039

Research on the characteristics of lossy objects in a reverberation chamber

doi: 10.11884/HPLPB202234.220039
  • Received Date: 2022-02-11
  • Accepted Date: 2022-08-31
  • Rev Recd Date: 2022-08-30
  • Available Online: 2022-08-31
  • Publish Date: 2022-09-20
  • Aiming at the loaded effect of reverberation chamber, the lossy approaches in cavity are analyzed, and it is concluded that the loaded lossy is the only controllable approach in the testing process. Then five test scenarios are constructed to estimate the quality factor of reverberation chamber by using the time domain method. The result shows that the lossy effect caused by metal antenna supports is the least, while the non-metallic antenna supports could significantly load the reverberation chamber and reduce the quality factor of reverberation chamber. With the increase of the number of non-metallic supports, the effects would become more obviously. In addition, the average absorption cross section of the load is also investigated, taking all the lossy objects in the reverberation chamber as one lossy absorption cross section. It is shown that the absorption cross section of the metal antenna support is the smallest, and the loading absorption cross section of the non-metal support is significantly increased.
  • loading
  • [1]
    Migliaccio M, Gradoni G, Arnaut L R. Electromagnetic reverberation: the legacy of Paolo Corona[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 643-652. doi: 10.1109/TEMC.2016.2546183
    [2]
    Tian Zhihao, Huang Yi, Shen Yaochun, et al. Efficient and accurate measurement of absorption cross section of a lossy object in reverberation chamber using two one-antenna methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 686-693. doi: 10.1109/TEMC.2016.2527363
    [3]
    Xu Qian, Huang Yi, Xing Lei, et al. B-scan in a reverberation chamber[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1740-1750. doi: 10.1109/TAP.2016.2535121
    [4]
    程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33:123002

    Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002
    [5]
    姜林, 王庆国, 程二威. 机械搅拌混响室独立样本数建模及实验[J]. 强激光与粒子束, 2013, 25(11):3050-3054 doi: 10.3788/HPLPB20132511.3050

    Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054 doi: 10.3788/HPLPB20132511.3050
    [6]
    Kim J S, Mittra R. Performance evaluation of a mode-stirred reverberation chamber using the finite difference time domain (FDTD) simulation[C]//Proceedings of 2021 Asia-Pacific Symposium on Electromagnetic Compatibility. 2012: 173-176.
    [7]
    Harima K, Yamanaka Y. FDTD analysis on the effect of stirrers in a reverberation chamber[C]//Proceedings of 1999 International Symposium on Electromagnetic Compatibility. 1999: 260-263.
    [8]
    Primiani V M, Moglie F. Reverberation chamber performance varying the position of the stirrer rotation axis[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 486-489. doi: 10.1109/TEMC.2013.2285313
    [9]
    Bastianelli L, Primiani V M, Moglie F. Stirrer efficiency as a function of its axis orientation[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1732-1735. doi: 10.1109/TEMC.2015.2477465
    [10]
    Moglie F, Bastianelli L, Primiani V M. Reliable finite-difference time-domain simulations of reverberation chambers by using equivalent volumetric losses[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 653-660. doi: 10.1109/TEMC.2016.2548520
    [11]
    Carlberg U, Kildal P S, Carlsson J. Numerical study of position stirring and frequency stirring in a loaded reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(1): 12-17. doi: 10.1109/TEMC.2008.2011818
    [12]
    Zhao Huapeng, Shen Zhongxiang. Fast wideband analysis of reverberation chambers using hybrid discrete singular convolution-method of moments and adaptive frequency sampling[J] IEEE Transactions on Magnetics, 2015, 51: 7206804.
    [13]
    IEC 61000-4-21, Electromagnetic compatibility (EMC) - Part 4-21: testing and measurement techniques—reverberation chamber test methods[S].
    [14]
    Xu Qian, Huang Yi, Xing Lei, et al. Average absorption coefficient measurement of arbitrarily shaped electrically large objects in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(6): 1776-1779. doi: 10.1109/TEMC.2016.2587679
    [15]
    Carlberg U, Kildal P S, Wolfgang A, et al. Calculated and measured absorption cross sections of lossy objects in reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(2): 146-154. doi: 10.1109/TEMC.2004.826878
    [16]
    Xu Qian, Huang Yi, Xing Lei, et al. Extract the decay constant of a reverberation chamber without satisfying Nyquist criterion[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(3): 153-155. doi: 10.1109/LMWC.2016.2526027
    [17]
    Cui Y, Wei G, Wang S, et al. Fast calculation of reverberation chamber Q-factor[J]. Electronics Letters, 2012, 48(18): 1116-1117. doi: 10.1049/el.2012.2106
    [18]
    Wang Song, Wu Zhancheng, Wei Guanghui, et al. A new method of evaluating reverberation chamber Q-factor with experimental validation[J]. Progress in Electromagnetics Research Letters, 2013, 36: 103-112. doi: 10.2528/PIERL12090710
    [19]
    Clegg J, Marvin A C, Dawson J F, et al. Optimization of stirrer designs in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 824-832. doi: 10.1109/TEMC.2005.860561
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (606) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return