Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Ma Wenjing, Zhao Zhuang, Wang Sihui, et al. Design and thermal analysis of front-end photon absorber at HALF[J]. High Power Laser and Particle Beams, 2022, 34: 104007. doi: 10.11884/HPLPB202234.220057
Citation: Ma Wenjing, Zhao Zhuang, Wang Sihui, et al. Design and thermal analysis of front-end photon absorber at HALF[J]. High Power Laser and Particle Beams, 2022, 34: 104007. doi: 10.11884/HPLPB202234.220057

Design and thermal analysis of front-end photon absorber at HALF

doi: 10.11884/HPLPB202234.220057
  • Received Date: 2022-02-25
  • Rev Recd Date: 2022-03-30
  • Available Online: 2022-04-18
  • Publish Date: 2022-08-22
  • The Hefei Advanced Light Facility (HALF) is a diffraction limited storage ring (DLSR).The extracted light of HALF has higher brightness resulting in higher heat load to the storage ring. The redundant synchrotron radiation is absorbed by the photon absorber located in the front-end to protect the ultrahigh vacuum system of DLSR. A special design of the photon absorber is required due to the compact physical design. Considering the toothed surface profile, cooling channel, and installation, we propose a photon absorber made of CuCrZr without additional positioning on the basis of the two-piece vertical absorber. The spot size and power of the radiation from the bending magnet with a bending angle of 2.74° are calculated. The thermal-mechanical simulations based on the finite element analysis method show acceptable results. The maximum thermal deformation, temperature, and stress are 0.05 mm, 80 ℃, and 20.8 MPa, respectively, indicating that the new absorber works in a safe range. The present study provides a critical theoretical basis for the design of the photon absorber in the front-end of HALF.
  • loading
  • [1]
    陈丽萍, 蒋迪奎, 殷立新, 等. 上海光源储存环光子吸收器布局设计[J]. 核技术, 2009, 32(5):326-332

    Chen Liping, Jiang Dikui, Yin Lixin, et al. Layout of photon absorbers in the SSRF storage ring[J]. Nuclear Techniques, 2009, 32(5): 326-332
    [2]
    陈丽萍. 上海光源储存环光子吸收器结构设计与研制[J]. 真空科学与技术学报, 2009, 29(5):546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18

    Chen Liping. Photon absorber development for storage ring of Shanghai synchrotron radiation facility[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(5): 546-551 doi: 10.3969/j.issn.1672-7126.2009.05.18
    [3]
    李勇军. 上海光源高热负载前端区的系统设计与研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2016

    Li Yongjun. Design and study of high heat load front-end at SSRF[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2016
    [4]
    Herbert J D, Malyshev O B, Middleman K J, et al. Design of the vacuum system for Diamond, the UK third generation light source[J]. Vacuum, 2004, 73(2): 219-224. doi: 10.1016/j.vacuum.2003.12.019
    [5]
    Quispe M, Campmany J, Casas J J, et al. Study, design and optimization analysis of the ALBA LOREA dipole vacuum chamber and crotch absorbers based on finite element analysis[C]//Proceedings of the 9th Edit. of the Mech. Eng. Des. of Synchrotron Radiat. Equip. and Instrum. Conference. Barcelona, Spain, 2016: 191-193.
    [6]
    Mochizuki T, Sakurai Y, Shu D, et al. Design of compact absorbers for high-heat-load X-ray undulator beamlines at SPring-8[J]. Journal of Synchrotron Radiation, 1998, 5(4): 1199-1201. doi: 10.1107/S0909049598000387
    [7]
    Jaski Y. New front-end design for multiple in-line undulators at the advanced photon source[J]. AIP Conference Proceedings, 2004, 705(1): 356-359.
    [8]
    Jaski Y. Thermal analysis of the components of the insertion device front ends FEv1.2 and FEv1.5[R]. ANL/APS/TB-50, 2005.
    [9]
    王纳秀. 同步辐射光束线热缓释技术研究及冷却技术的应用[D]. 上海: 中国科学院上海应用物理研究所, 2006

    Wang Naxiu. Research on cooling technique of SR beamline components and application of cooling technique[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2006
    [10]
    Quispe M, Campmany J, Gevorgyan, et al. Design of an integrated crotch absorber for ABLA synchrotron light source[C]//Proceedings of MEDSI 2018. Paris, France, 2018.
    [11]
    Rodrigues A R D, Arroyo F, Bagnato O R, et al. SIRIUS status report[C]//Proceedings of IPAC 2016. Busan, Korea, 2016: 2811-2814.
    [12]
    Sheng I C, Chang C C, Chan C K, et al. The development of CuCrZr high heat load absorber in TPS[C]//Proceedings of 9th Edit. of the Mech. Eng. Des. of Synchrotron Radiat. Equip. and Instrum. Conf. Barcelona, Spain, 2016.
    [13]
    Jin Limin, Li Yongjun, Zhu Wanqian, et al. Thermal analysis of the first ultra-high heat-load front-end absorbers for the ultra-hard multi-functional X-ray beam-line at SSRF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 989: 164955. doi: 10.1016/j.nima.2020.164955
    [14]
    蒋迪奎, 殷立新. 多极扭摆磁铁同步辐射光的功率分布[J]. 中国科学技术大学学报, 1997, 27(4):440-444

    Jiang Dikui, Yin Lixin. Synchrotron radiation power distribution from multipole wiggler magnet[J]. Journal of University of Science and Technology of China, 1997, 27(4): 440-444
    [15]
    陈龙康. 同步辐射光源的尺寸、散射角和中心亮度计算[J]. 强激光与粒子束, 1998, 10(3):467-472

    Chen Longkang. Calculation of a few parameters of Hefei Synchrotron Light Source[J]. High Power Laser and Particle Beams, 1998, 10(3): 467-472
    [16]
    薛莹洁. 平面磁控溅射靶的优化设计及膜厚均匀性分析[D]. 西安: 陕西科技大学, 2017

    Xue Yingjie. Optimization design of planar magnetron sputtering target and analysis of film thickness uniformity[D]. Xi’an: Shaanxi University of Science & Technology, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (950) PDF downloads(223) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return