Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Wang Zitao, Zhou Weimin, Deng Zhigang, et al. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067
Citation: Wang Zitao, Zhou Weimin, Deng Zhigang, et al. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067

Laser electron acceleration in pre-plasma-filled channel targets

doi: 10.11884/HPLPB202234.220067
  • Received Date: 2022-03-13
  • Accepted Date: 2022-06-10
  • Rev Recd Date: 2022-05-23
  • Available Online: 2022-06-13
  • Publish Date: 2022-09-20
  • Two-dimensional PIC (Particle-in-Cell) simulation is used to investigate the electron acceleration process when a vacuum channel is filled with pre-plasma. Using a tightly focused ultra-intense short-pulse laser to interact with a hollow plasma channel is an effective way to obtain a relativistic electron beam with high power and high collimation. In the experiment, the pre-plasma generated by the laser pre-pulse ablation of the target wall will expand and fill the vacuum channel, resulting in changes in the quality of the electron beam. The simulation results show that under the condition of short-pulse laser with a power density of 5.0$ \times {10}^{20}\;{\mathrm{W}/\mathrm{c}\mathrm{m}}^{2} $, the laser field preferentially interacts with the low-density plasma when the channel is filled with plasmas. The laser pulse interacts with the low-density plasma and the interaction of the channel wall is weakened. The electron acceleration mechanism is transformed from the vacuum electron acceleration dominated by the longitudinal field to the plasma electron acceleration dominated by the transverse electric field, resulting in an electron beam with a larger amount of charge, but with a lower energy and an increased divergence angle.
  • loading
  • [1]
    Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [2]
    Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Physical Review Letters, 2006, 96: 245002. doi: 10.1103/PhysRevLett.96.245002
    [3]
    Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
    [4]
    Vranic M, Klimo O, Korn G, et al. Multi-GeV electron-positron beam generation from laser-electron scattering[J]. Scientific Reports, 2018, 8: 4702. doi: 10.1038/s41598-018-23126-7
    [5]
    Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
    [6]
    Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 2019, 21: 013008. doi: 10.1088/1367-2630/aaf8c4
    [7]
    Yu J Q, Hu R H, Gong Z, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
    [8]
    Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
    [9]
    Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Physics of Plasmas, 2011, 18: 056305. doi: 10.1063/1.3566082
    [10]
    Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets[J]. Nature Physics, 2016, 12(5): 499-504. doi: 10.1038/nphys3614
    [11]
    Drake R P. High-energy-density physics[J]. Physics Today, 2010, 63(6): 28-33. doi: 10.1063/1.3455249
    [12]
    Del Sorbo D, Feugeas J L, Nicolaï P, et al. Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas[J]. Laser and Particle Beams, 2016, 34(3): 412-425. doi: 10.1017/S0263034616000252
    [13]
    Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams[J]. Nature, 2010, 467(7313): 301-304. doi: 10.1038/nature09366
    [14]
    Arnould M, Goriely S, Takahashi K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries[J]. Physics Reports, 2007, 450(4/6): 97-213.
    [15]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [16]
    Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3. doi: 10.1017/hpl.2014.52
    [17]
    Faure J, Glinec A, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
    [18]
    Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
    [19]
    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [20]
    Tsakiris G D, Gahn C, Tripathi V K. Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma[J]. Physics of Plasmas, 2000, 7(7): 3017-3030. doi: 10.1063/1.874154
    [21]
    Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
    [22]
    Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52
    [23]
    Arefiev A V, Khudik V N, Robinson A P L, et al. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas[J]. Physics of Plasmas, 2016, 23: 056704. doi: 10.1063/1.4946024
    [24]
    Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 2011, 107: 265002. doi: 10.1103/PhysRevLett.107.265002
    [25]
    Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
    [26]
    Thévenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nature Physics, 2016, 12(4): 355-360. doi: 10.1038/nphys3597
    [27]
    Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
    [28]
    Gong Z, Robinson A P L, Yan X Q, et al. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 035012. doi: 10.1088/1361-6587/aaf94b
    [29]
    Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Physical Review E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
    [30]
    Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 2016, 6: 23256. doi: 10.1038/srep23256
    [31]
    何武, 周维民, 张智猛, 等. 强激光与柱腔靶作用下准直高能电子束的产生[J]. 强激光与粒子束, 2015, 27:072003 doi: 10.11884/HPLPB201527.072003

    He Wu, Zhou Weimin, Zhang Zhimeng, et al. High-energy collimated electron acceleration from ultra-intense laser interaction with tube targets[J]. High Power Laser and Particle Beams, 2015, 27: 072003 doi: 10.11884/HPLPB201527.072003
    [32]
    吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091

    Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
    [33]
    Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 2020, 102: 013206. doi: 10.1103/PhysRevE.102.013206
    [34]
    Wang Tao, Gong Zheng, Chin K, et al. Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities[J]. Plasma Physics and Controlled Fusion, 2019, 61: 084004. doi: 10.1088/1361-6587/ab2499
    [35]
    Ji L L, Snyder J, Shen B F. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
    [36]
    Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (735) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return