Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Liu Kexin, Hao Jiankui, Quan Shengwen, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104014. doi: 10.11884/HPLPB202234.220075
Citation: Liu Kexin, Hao Jiankui, Quan Shengwen, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104014. doi: 10.11884/HPLPB202234.220075

SRF accelerating technology applied in light sources

doi: 10.11884/HPLPB202234.220075
  • Received Date: 2022-03-19
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-06-27
  • Publish Date: 2022-08-22
  • Superconducting accelerator, which uses SRF cavity working at cryogenic environment, can operate in macro-pulse or CW modes. Due to its large beam aperture, the interaction between beam and cavity can be reduced remarkably. After the development of more than a half century, SRF technology is quite advanced and has been applied in different kinds of light sources. In this paper, basic principle of SRF, fabrication of elliptical SRF cavity and structure of typical cryomodule of SRF accelerator are introduced.
  • loading
  • [1]
    Schwettman H A. Proceedings of 5th International Conference of High Energy Accelerators (Frascati, 1965) [C].
    [2]
    Turneaure J P, Viet N T. Superconducting Nb TM010 mode electron-beam welded cavities[J]. Applied Physics Letters, 1970, 16(9): 333-335. doi: 10.1063/1.1653215
    [3]
    Klein U, Proch D. Proceedings of the Conference of Future Possibilities for Electron Accelerators [C]. Charlottesville, 1979: N1-17.
    [4]
    Shemelin V D. Low loss and high gradient SC cavities with different wall slope angles[C]//2007 IEEE Particle Accelerator Conference. 2007: 2352-2354.
    [5]
    Reschke D, Aderhold S, Möller A, et al. Results on large grain nine-cell cavities at DESY: Gradients up to 45 MV/m after electropolishing[C]//Proceedings of SRF2011. 2011: 490-494.
    [6]
    Geng R L. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab[C]//Proceedings of SRF2009. 2009: 213-217.
    [7]
    郝建奎, 全胜文, 林林, 等. 国际直线对撞机(ILC)高梯度射频超导加速腔研制[J]. 中国科学:物理学 力学 天文学, 2013, 43(10):1321-1326

    Hao Jiankui, Quan Shengwen, Lin Lin, et al. The first high gradient 9-cell superconducting cavity reached ILC requirements in China[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(10): 1321-1326
    [8]
    Kostin D, Gössel A, Lange R, et al. Testing the FLASH superconducting accelerating modules[C]//Proceedings of the 13th International Workshop on RF Superconductivity SRF2007. 2007: 442-445.
    [9]
    Reschke D, Decking W, Walker N J, et al. The commissioning of the European-XFEL linac and its performance[C]//Proceedings of the 18th International Conference on RF Superconductivity SRF2017. 2017: 1-5.
    [10]
    Hao Jiankui, Quan Shengwen, Lin Lin, et al. Fabrication, treatment and test of large grain cavities[C]//Proceedings of the 18th International Conference on RF Superconductivity SRF2007. 2017: 700-702.
    [11]
    Singer W. Development of large grain cavities at DESY[C]//TTC2011, Beijing, 2011.
    [12]
    Grassellino A, Romanenko A, Sergatskov D, et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures[J]. Superconductor Science and Technology, 2013, 26: 102001. doi: 10.1088/0953-2048/26/10/102001
    [13]
    Grassellino A, Romanenko A, Trenikhina Y, et al. Unprecedented quality factors at accelerating gradients up to 45 MVm−1 in niobium superconducting resonators via low temperature nitrogen infusion[J]. Superconductor Science and Technology, 2017, 30: 094004. doi: 10.1088/1361-6668/aa7afe
    [14]
    Posen S. Update on insitu mid-T bake[R]. TTC2020, CERN, 2020.
    [15]
    Chen Shu, Hao Jiankui, Lin Lin, et al. Successful nitrogen doping of 1.3GHz single cell superconducting radio-frequency cavities[J]. Chinese Physics Letters, 2018, 35: 037401. doi: 10.1088/0256-307X/35/3/037401
    [16]
    Zhou Quan, He Feisi, Pan Weimin, et al. Medium-temperature baking of 1.3 GHz superconducting radio frequency single-cell cavity[J]. Radiation Detection Technology and Methods, 2020, 4(4): 507-512. doi: 10.1007/s41605-020-00208-7
    [17]
    Chen J F, Hou H T, Liu Y F, et al. N-doping studies with single-cell cavities for the SHINE project[C]//Proceedings of the 19th International Conference on RF Superconductivity SRF2019. 2019: 102-105.
    [18]
    Galayda J N. LCLS-II final design report[R]. LCLSII-1.1-DR-0251-R0, 2015.
    [19]
    Zhu Z Y, Zhao Z T, Wang D, et al. SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai[C]//Proceedings of the 38th International Free Electron Laser Conference(FEL2017). 2017: 182-184.
    [20]
    Cavallari G, Chiaveri E, Tückmantel J, et al. Acceptance tests of superconducting cavities and modules for LEP from industry[C]//Proceedings of the 4th European Particle Accelerator Conference EPAC94. 1994: 2042-2044.
    [21]
    Saito K, Kojima Y, Furuya T, et al. R&D of superconducting cavities at KEK[C]//Proceedings of the 4th Workshop on RF Superconductivity. 1989: 635-694.
    [22]
    Belomestnykh S, Barnes P, Chojnacki E, et al. Running CESR at high luminosity and beam current with superconducting RF system[C]//Proceedings of EPAC 2000. 2000: 2025-2027.
    [23]
    Furuya T, Mitsunobu S, Tajima T, et al. Thermal cycle tests of KEK 500MHz cavities[C]//Proceedings of the 5th Workshop on RF Superconductivity. 1991: 684-693.
    [24]
    Wang Guangwei, Dai J P, Dai X W, et al. Fabrication and test of 500MHz Nb cavity for BEPCII[C]//Proceedings of the 15th International Conference on RF Superconductivity. 2011: 512-514.
    [25]
    Liu J F, Hou H T, Mao D Q, et al. Development of superconducting radio frequency cavities at SINAP[C]//Proceedings of IPAC2012. 2012: 2248-2250.
    [26]
    Zhang Pei, Zhang Xinying, Li Zhongquan, et al. Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta=1 cavity[J]. Review of Scientific Instruments, 2019, 90: 084705. doi: 10.1063/1.5119093
    [27]
    Gruner S M, Bilderback D, Bazarov I, et al. Energy recovery linacs as synchrotron radiation sources (invited)[J]. Review of Scientific Instruments, 2002, 73(3): 1402-1406. doi: 10.1063/1.1420754
    [28]
    Poole M W, Clarke J A, Seddon E A. 4GLS: an advanced multi-source low energy photon facility for the UK[C]//Proceedings of EPAC2002. 2002: 733-735.
    [29]
    Aune B, Bandelmann R, Bloess D, et al. Superconducting TESLA cavities[J]. Physical Review Accelerators and Beams, 2000, 3: 092001. doi: 10.1103/PhysRevSTAB.3.092001
    [30]
    Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. New York: John Wiley & Sons, 1998: 59-62.
    [31]
    Crawford A, Eichhorn R, Furuta F, et al. The joint high Q0 R&D program for LCLS-II[C]//Proceedings of the 5th International Particle Accelerator Conference IPAC2014. 2014: 2627-2630.
    [32]
    He Feisi. Experimental study of simplified mid-T furnace baking at IHEP (15+5)[C/OL]//TTC 2021 Virtual Meeting. (2021-01-19). https://indico.desy.de/event/27572/contributions/94299/.
    [33]
    Büchner A, Gabriel F, Grosse E, et al. The ELBE-project at Dresden-Rossendorf[C]//Proceedings of EPAC2000. 2000: 732-734.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1281) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return