Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Huang Senlin, Liu Kexin. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076
Citation: Huang Senlin, Liu Kexin. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 2022, 34: 104011. doi: 10.11884/HPLPB202234.220076

Energy recovery linac light source

doi: 10.11884/HPLPB202234.220076
  • Received Date: 2022-03-19
  • Rev Recd Date: 2022-06-19
  • Available Online: 2022-06-27
  • Publish Date: 2022-08-22
  • Energy recovery linacs recapture the energy of the used electron beam into the electromagnetic field in RF cavities for subsequent acceleration, which can greatly reduce both the RF power supply required for high current acceleration and harmful radiation from the dumped beam. In addition to a high energy efficiency and reduced radiation from the dump, energy recovery linac light sources have the advantage of providing short-bunch, low-emittance electron beams for emitting high-brightness, highly coherent photons. These characteristics make them a very promising candidate for future advanced light source. This paper presents an introduction to energy recovery linacs, with the emphasis on basic principles and the most important physics and technical problems, as well as the activities in developing energy recovery linac facilities around the world. A brief introduction to some representative schemes of energy recovery linac light source is presented in the end.
  • loading
  • [1]
    Tigner M. A possible apparatus for electron clashing-beam experiments[J]. Il Nuovo Cimento (1955-1965), 1965, 37(3): 1228-1231.
    [2]
    Schriber S O, Funk L W, Hodge S B, et al. Experimental measurements on a 25 meV reflexotron[J]. IEEE Transactions on Nuclear Science, 1977, 24(3): 1061-1063. doi: 10.1109/TNS.1977.4328851
    [3]
    Flanz J B, Sargent C P. Operation of an isochronous beam recirculation system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 241(2/3): 325-333.
    [4]
    Benson S, Biallas G, Bohn C, et al. First lasing of the Jefferson Lab IR Demo FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 27-32.
    [5]
    Neil G R, Bohn C L, Benson S V, et al. Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery[J]. Physical Review Letters, 2000, 84(4): 662-665. doi: 10.1103/PhysRevLett.84.662
    [6]
    Behre C, Benson S, Biallas G, et al. First lasing of the IR upgrade FEL at Jefferson lab[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1/2): 19-22.
    [7]
    Bilderback D H, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S773-S797. doi: 10.1088/0953-4075/38/9/022
    [8]
    Douglas D, Technical Note 96-050, Jefferson Laboratory (1996).
    [9]
    Shizuma T, Hajima R, Minehara E J, et al. Injector design for the JAERI-FEL energy-recovery transport[C]//Proceedings of the 7th European Particle Accelerator Conference. 2000: 1074-1076.
    [10]
    刘克新, 郝建奎, 全胜文, 等. 射频超导技术[J]. 强激光与粒子束, 2022, 34:104014 doi: 10.11884/HPLPB202234.220075

    Liu Kexin, Hao Jiankui, Quan Shengwen, et al. Superconducting radio-frequency technology[J]. High Power Laser and Particle Beams, 2022, 34: 104014 doi: 10.11884/HPLPB202234.220075
    [11]
    Merminga L, Douglas D R, Krafft G A. High-current energy-recovering electron linacs[J]. Annual Review of Nuclear and Particle Science, 2003, 53: 387-429. doi: 10.1146/annurev.nucl.53.041002.110456
    [12]
    Hajima R. Emittance compensation in a return arc of an energy-recovery linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528(1/2): 335-339.
    [13]
    Sereno N S R. Experimental studies of multipass beam breakup and energy recovery using the CEBAF injector LINAC[D]. Urbana: University of Illinois, 1994.
    [14]
    Pozdeyev E. Regenerative multipass beam breakup in two dimensions[J]. Physical Review Accelerators and Beams, 2005, 8: 054401. doi: 10.1103/PhysRevSTAB.8.054401
    [15]
    Padamsee H, Knobloch J, Hays T. RF Superconductivity for accelerators[M]. New York: John Wiley & Sons, 1998.
    [16]
    Yunn B C. Expressions for the threshold current of multipass beam breakup in recirculating linacs from single cavity models[J]. Physical Review Accelerators and Beams, 2005, 8: 104401. doi: 10.1103/PhysRevSTAB.8.104401
    [17]
    Bazarov I V, Hoffstaetter G H. Multi-pass beam-breakup: theory and calculation[C]//Proceedings of EPAC 2004. 2004: 2197-2199.
    [18]
    Tennant C D. Studies of energy recovery linacs at Jefferson laboratory: 1 GeV demonstration of energy recovery at CEBAF and studies of the multibunch, multipass beam breakup instability in the 10 kW FEL upgrade driver[D]. College of William & Mary - Arts & Sciences, 2006.
    [19]
    Adderley P A, Clark J, Grames J, et al. Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator[J]. Physical Review Accelerators and Beams, 2010, 13: 010101. doi: 10.1103/PhysRevSTAB.13.010101
    [20]
    Dunham B, Barley J, Bartnik A, et al. Record high-average current from a high-brightness photoinjector[J]. Applied Physics Letters, 2013, 102: 034105. doi: 10.1063/1.4789395
    [21]
    Gulliford C, Bartnik A, Bazarov I, et al. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector[J]. Applied Physics Letters, 2015, 106: 094101. doi: 10.1063/1.4913678
    [22]
    Zheng Lianmin, Li Zizheng, Du Yingchao, et al. Design of a 217 MHz VHF gun at Tsinghua University[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 2050-2053.
    [23]
    Sannibale F, Filippetto D, Qian H, et al. High-brightness beam tests of the very high frequency gun at the Advanced Photo-injector EXperiment test facility at the Lawrence Berkeley National Laboratory[J]. Review of Scientific Instruments, 2019, 90: 033304. doi: 10.1063/1.5088521
    [24]
    Petrushina I, Litvinenko V N, Jing Y, et al. High-brightness continuous-wave electron beams from superconducting radio-frequency photoemission gun[J]. Physical Review Letters, 2020, 124: 244801. doi: 10.1103/PhysRevLett.124.244801
    [25]
    Quan Shengwen, Hao Jiankui, Lin Lin, et al. Stable operation of the DC-SRF photoinjector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 798: 117-120.
    [26]
    Zhao Sheng, Huang Senlin, Lin Lin, et al. Longitudinal phase space improvement of a continuous-wave photoinjector toward X-ray free-electron laser application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1018: 165796. doi: 10.1016/j.nima.2021.165796
    [27]
    Liepe M. Conceptual layout of the cavity string of the Cornell ERL main linac cryomodule[C]//Proceedings of the 11th Workshop on RF Superconductivity. 2003: 115-119.
    [28]
    Li Yongming, Zhu Feng, Quan Shengwen, et al. The design of a five-cell high-current superconducting cavity[J]. Chinese Physics C, 2012, 36(1): 74-79. doi: 10.1088/1674-1137/36/1/013
    [29]
    Douglas D, Benson S V, Krafft G A, et al. Driver accelerator design for the 10kW upgrade for the JLAB IR FEL[C]//Proc of LINAC. 2001: 867-870.
    [30]
    Merminga L, Laboratory J. Energy recovery linacs[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 22-26.
    [31]
    Tennant C, Benson S, Boyce J, et al. LERF – New life for the Jefferson laboratory FEL[C]//Proceedings of the 59th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs. 2017: 45-48.
    [32]
    Merminga L, Beard K, Cardman L, et al. ELIC: an electron-light ion collider based at CEBAF[C]//Proceedings of EPAC 2002. 2002: 203-205.
    [33]
    Nishimori N, Hajima R, Iijima H, et al. FEL oscillation with a high extraction efficiency at JAEA ERL FEL[C]//Proceedings of the 28th International Free Electron Laser Conference. 2006: 265-272.
    [34]
    Sakanaka S, Adachi M, Adachi S, et al. Recent progress and operational status of the compact ERL at KEK[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1359-1362.
    [35]
    Morikawa Y, Haga K, Hagiwara M, et al. New industrial application beamline for the cERL in KEK[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 3475-3477.
    [36]
    Gulliford C, Banerjee N, Bartnik A, et al. CBETA beam commissioning results[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 748-750.
    [37]
    Arnold M, Birkhan J, Pforr J, et al. First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac[J]. Physical Review Accelerators and Beams, 2020, 23: 020101. doi: 10.1103/PhysRevAccelBeams.23.020101
    [38]
    Vinokurov N A. Status of Novosibirsk ERL[C]//Proceedings of the 63th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs. 2019: 5-7.
    [39]
    Kaabi W, Chaikovska I, Stocchi A, et al. PERLE: a high power energy recovery facility[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019: 1396-1399.
    [40]
    Wang Guimei, Chao Y C, Liu Chuyu, et al. Energy recovery transport design for PKU FEL[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 1191-1193.
    [41]
    Huang S L, Liu K X, Quan S W, et al. Optics layout for the ERL test facility at Peking University[C]//Proceedings of ERL 2011. 2011: 49-51.
    [42]
    Chen Si, Huang Senlin, Li Yongming, et al. Multi-pass, multi-bunch beam breakup for 9-cell Tesla cavities in the ERL[J]. Chinese Physics C, 2013, 37: 087001. doi: 10.1088/1674-1137/37/8/087001
    [43]
    Cui Xiaohao, Wang Jiuqing, Wang Shuhong, et al. Lattice design and beam dynamics of ERL-TF in IHEP, Beijing[C]//Proceedings of ERL 2011. 2011: 127-129.
    [44]
    Dai Jinhua, Deng Haixiao, Dai Zhimin. Design of Shanghai high power THz-FEL source[C]//Proceedings of FEL 2011. 2011: 271-273.
    [45]
    Li P, Wu D, Li M, et al. First lasing at the CAEP THz FEL facility[C]//Proceedings of 39th Free Electron Laser Conference. 2019: 11-14.
    [46]
    Gruner S M, Bilderback D, Bazarov I, et al. Energy recovery linacs as synchrotron radiation sources (invited)[J]. Review of Scientific Instruments, 2002, 73(2): 1402-1406.
    [47]
    Bilderback D H, Brock J D, Dale D S, et al. Energy recovery linac (ERL) coherent hard X-ray sources[J]. New Journal of Physics, 2010, 12: 035011. doi: 10.1088/1367-2630/12/3/035011
    [48]
    Flavell W R, Quinn F M, Clarke J A, et al. 4GLS – the UK’s fourth generation light source[C]//Proceedings of SPIE 5917, Fourth Generation X-Ray Sources and Optics III. 2005: 59170C.
    [49]
    金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激光——相干X射线产生原理[M]. 黄森林, 刘克新, 译. 北京: 北京大学出版社, 2018

    Kim K J, Huang Zhirong, Lindberg R. Synchrotron radiation and free-electron lasers: principles of coherent X-ray generation[M]. Huang Senlin, Liu Kexin, trans. Beijing: Peking University Press, 2018
    [50]
    Kim K J, Shvyd’ko Y, Reiche S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac[J]. Physical Review Letters, 2008, 100: 244802. doi: 10.1103/PhysRevLett.100.244802
    [51]
    Zhao Z T, Wang Z, Feng C, et al. Energy recovery linac based fully coherent light source[J]. Scientific Reports, 2021, 11: 23875. doi: 10.1038/s41598-021-03354-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1040) PDF downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return