Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Liang Luyao, Zhao Xiaoyun, Zhao Jinquan. An automatic focusing algorithm based on U-Net for target location in multiple depth-of-field scene[J]. High Power Laser and Particle Beams, 2022, 34: 129001. doi: 10.11884/HPLPB202234.220086
Citation: Liang Luyao, Zhao Xiaoyun, Zhao Jinquan. An automatic focusing algorithm based on U-Net for target location in multiple depth-of-field scene[J]. High Power Laser and Particle Beams, 2022, 34: 129001. doi: 10.11884/HPLPB202234.220086

An automatic focusing algorithm based on U-Net for target location in multiple depth-of-field scene

doi: 10.11884/HPLPB202234.220086
  • Received Date: 2022-03-28
  • Accepted Date: 2022-10-09
  • Rev Recd Date: 2022-10-07
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • Evaluation function of automatic focusing system is the key to evaluate image quality. In multi-depth-of-field scenarios, when the target is located in the center of the image, the sensitivity of the traditional focusing evaluation curve is low; when the target deviates from the center, the focus evaluation function curve is prone to local maximum, which affects the accuracy of the automatic focusing system. In view of these two situations, this paper proposes a method based on U-Net neural network and sets the corresponding window and evaluation function. When the object is located in the center of the image, a new focusing evaluation function, SMD-Roberts function, is proposed. When the target is not in the center of the image, the corresponding window is set for the image and the SML evaluation function is selected to evaluate the image quality. Experimental results show that , compared with traditional focused evaluation function and central window method, this method can effectively solve the problem that the focus evaluation function is not accurate in judging the clearest position of the object and the double peak of the focusing evaluation function curve in multi-depth-of-field scenes and obviously improve the unbiasedness, unimodal and sensitivity of the focused evaluation function. This method has strong universality and is more suitable for focused evaluation system.
  • loading
  • [1]
    包丞啸. 基于图像处理的自动聚焦技术研究[D]. 济南: 山东大学, 2021: 15-16

    Bao Chengxiao. Study on auto-focusing technology based on image processing[D]. Ji’nan: Shandong University, 2021: 15-16
    [2]
    何帆. 基于图像模糊度预测的快速聚焦算法研究[D]. 重庆: 重庆邮电大学, 2021: 25-28

    He Fan. Research on focusing algorithm based on image degree of blur prediction[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021: 25-28
    [3]
    Groen F C A, Young I T, Ligthart G. A comparison of different focus functions for use in autofocus algorithms[J]. Cytometry, 1985, 6(2): 81-91. doi: 10.1002/cyto.990060202
    [4]
    Firestone L, Cook K, Culp K, et al. Comparison of autofocus methods for automated microscopy[J]. Cytometry, 1991, 12(3): 195-206. doi: 10.1002/cyto.990120302
    [5]
    王立昌. 监控摄像机的自动聚焦系统设计与实现[D]. 苏州: 苏州大学, 2015: 23-27

    Wang Lichang. Design and implementation of network camera auto-focus system[D]. Suzhou: Suzhou University, 2015: 23-27
    [6]
    王烨茹. 基于数字图像处理的自动对焦方法研究[D]. 杭州: 浙江大学, 2018: 90-91

    Wang Yeru. Research on auto-focus methods based on digital imaging[D]. Hangzhou: Zhejiang University, 2018: 90-91
    [7]
    Lee S Y, Kumar Y, Cho J M, et al. Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1237-1246. doi: 10.1109/TCSVT.2008.924105
    [8]
    Liu Lianjie, Zheng Yayu, Feng Jiaqin, et al. A fast auto-focusing technique for multi-objective situation[C]//2010 International Conference on Computer Application and System Modeling. 2010: 607-610.
    [9]
    李学胜. 家蚕微粒子病显微图像自动聚焦与识别方法研究[D]. 武汉: 湖北工业大学, 2021: 21-30

    Li Xuesheng. Research on automatic focusing and recognition method of microscopic image of silkworm pebrine disease[D]. Wuhan: Hubei University of Technology, 2021: 21-30
    [10]
    郭建, 赵显. 一种基于图像处理的快速自动聚焦算法[J]. 湘潭大学自然科学学报, 2012, 34(2):22-25 doi: 10.3969/j.issn.1000-5900.2012.02.005

    Guo Jian, Zhao Xian. An improved auto focus algorithm based on image processing[J]. Natural Science Journal of Xiangtan University, 2012, 34(2): 22-25 doi: 10.3969/j.issn.1000-5900.2012.02.005
    [11]
    Yousefi S, Rahman M, Kehtarnavaz N. A new auto-focus sharpness function for digital and smart-phone cameras[J]. IEEE Transactions on Consumer Electronics, 2011, 57(3): 1003-1009. doi: 10.1109/TCE.2011.6018848
    [12]
    Zhang Yani, Zhang Ying, Wen Changyun. A new focus measure method using moments[J]. Image and Vision Computing, 2000, 18(12): 959-965. doi: 10.1016/S0262-8856(00)00038-X
    [13]
    熊锐, 顾乃庭, 徐洪艳. 一种适应多方向灰度梯度变化的自动对焦评价函数[J]. 激光与光电子学进展, 2022, 59:0418001

    Xiong Rui, Gu Naiting, Xu Hongyan. An auto-focusing evaluation function adapted to multi-directional gray gradient change[J]. Laser & Optoelectronics Progress, 2022, 59: 0418001
    [14]
    熊锐. 基于数字图像处理的显微自动对焦技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 15-17

    Xiong Rui. Study on microscopic autofocus technology based on digital image processing[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of sciences), 2021: 15-17
    [15]
    尹爱军, 张焱, 杨彬, 等. 多窗口模式Roberts聚焦评价方法及其应用[J]. 重庆大学学报, 2011, 34(11):25-30 doi: 10.11835/j.issn.1000-582X.2011.11.005

    Yin Aijun, Zhang Yan, Yang Bin, et al. Roberts focused evaluation method and its application in multi-windows mode[J]. Journal of Chongqing University, 2011, 34(11): 25-30 doi: 10.11835/j.issn.1000-582X.2011.11.005
    [16]
    夏浩盛, 余飞鸿. 数码显微镜自动对焦算法[J]. 激光与光电子学进展, 2021, 58:0400002

    Xia Haosheng, Yu Feihong. Auto focusing algorithm of digital microscope[J]. Laser & Optoelectronics Progress, 2021, 58: 0400002
    [17]
    李斯文. 细胞筛选平台显微自动对焦系统研究[D]. 洛阳: 河南科技大学, 2017: 30-32

    Li Siwen. Study on microscopic auto-focus system of cell screening platform[D]. Luoyang: Henan University of Science and Technology, 2017: 30-32
    [18]
    李忠智, 尹航, 左剑凯, 等. 基于UNet++网络与多边输出融合策略的船舶检测模型[J]. 计算机工程, 2022, 48(4):276-283 doi: 10.19678/j.issn.1000-3428.0058696

    Li Zhongzhi, Yin Hang, Zuo Jiankai, et al. Ship detection model based on UNet++ network and multiple side-output fusion strategy[J]. Computer Engineering, 2022, 48(4): 276-283 doi: 10.19678/j.issn.1000-3428.0058696
    [19]
    彭方达. 基于语义分割的驾驶员安全带检测算法研究[D]. 郑州: 中原工学院, 2022: 18-21

    Peng Fangda. Research on driver seat belt detection algorithm based on semantic segmentation[D]. Zhengzhou: Zhongyuan University of Technology, 2022: 18-21
    [20]
    徐思则, 刘威. 基于UNet网络的乳腺癌肿瘤细胞图像分割[J]. 电子设计工程, 2022, 30(12):63-66,73 doi: 10.14022/j.issn1674-6236.2022.12.013

    Xu Size, Liu Wei. UNet-based image segmentation of breast cancer tumor cells[J]. Electronic Design Engineering, 2022, 30(12): 63-66,73 doi: 10.14022/j.issn1674-6236.2022.12.013
    [21]
    张杰, 唐立新, 陈子章, 等. 基于改进UNet网络的金丝球焊直径测量研究[J]. 现代制造工程, 2022(5):110-114 doi: 10.16731/j.cnki.1671-3133.2022.05.017

    Zhang Jie, Tang Lixin, Chen Zizhang, et al. Research on diameter measurement of gold wire ball solder joints based on improved UNet network[J]. Modern Manufacturing Engineering, 2022(5): 110-114 doi: 10.16731/j.cnki.1671-3133.2022.05.017
    [22]
    孟庆成, 李明健, 万达, 等. 基于M-Unet的混凝土裂缝实时分割算法[J]. 土木与环境工程学报, 2022:1-9

    Meng Qingcheng, Li Mingjian, Wan Da, et al. Real-time segmentation algorithm of concrete cracks based on M-Unet[J]. Journal of Civil and Environmental Engineering, 2022: 1-9
    [23]
    郭臻. 基于Unet深度学习的超级慢动作实践[J]. 现代电视技术, 2021(8):141-143 doi: 10.3969/j.issn.1671-8658.2021.08.034

    Guo Zhen. Super slow motion practice based on U-Net deep learning[J]. Advanced Television Engineering, 2021(8): 141-143 doi: 10.3969/j.issn.1671-8658.2021.08.034
    [24]
    张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述[J]. 激光与光电子学进展, 2022, 59:0200005

    Zhang Huan, Qiu Dawei, Feng Yibo, et al. Improved U-Net models and its applications in medical image segmentation: a review[J]. Laser & Optoelectronics Progress, 2022, 59: 0200005
    [25]
    葛云皓. 基于卷积神经网络的病理显微镜自动对焦与全局精准成像研究[D]. 上海: 上海交通大学, 2019: 20-30

    Ge Yunhao. Automatic focusing and global precise imaging of pathological microscope based on convolutional neural network[D]. Shanghai: Shanghai Jiao Tong University, 2019: 20-30
    [26]
    Nguyen T, Thai A, Adwani P, et al. Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks[C]//Digital Holography and Three-Dimensional Imaging. 2019: W3A. 32.
    [27]
    王原, 马瑜, 江妍, 等. U-Net改进的视网膜血管图像分割算法[J]. 计算机工程与设计, 2021, 42(10):2884-2893 doi: 10.16208/j.issn1000-7024.2021.10.025

    Wang Yuan, Ma Yu, Jiang Yan, et al. Improved retinal vascular image segmentation algorithm based on U-Net[J]. Computer Engineering and Design, 2021, 42(10): 2884-2893 doi: 10.16208/j.issn1000-7024.2021.10.025
    [28]
    蔡畅, 陈军波, 陈心浩. 基于改进U-Net方法的脑肿瘤磁共振图像分割[J]. 中南民族大学学报(自然科学版), 2021, 40(4):417-423

    Cai Chang, Chen Junbo, Chen Xinhao. MRI image segmentation of brain tumor based on improved U-Net method[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2021, 40(4): 417-423
    [29]
    Zeng Zhenhuan, Fan Chaodong, Xiao Leyi, et al. DEA-UNet: a dense-edge-attention UNet architecture for medical image segmentation[J]. Journal of Electronic Imaging, 2022, 31: 043032.
    [30]
    何承恩, 徐慧君, 王忠, 等. 多模态磁共振脑肿瘤图像自动分割算法研究[J]. 光学学报, 2020, 40:0610001 doi: 10.3788/AOS202040.0610001

    He Cheng’en, Xu Huijun, Wang Zhong, et al. Automatic segmentation algorithm for multimodal magnetic resonance-based brain tumor images[J]. Acta Optica Sinica, 2020, 40: 0610001 doi: 10.3788/AOS202040.0610001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article views (675) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return