Citation: | Liang Luyao, Zhao Xiaoyun, Zhao Jinquan. An automatic focusing algorithm based on U-Net for target location in multiple depth-of-field scene[J]. High Power Laser and Particle Beams, 2022, 34: 129001. doi: 10.11884/HPLPB202234.220086 |
[1] |
包丞啸. 基于图像处理的自动聚焦技术研究[D]. 济南: 山东大学, 2021: 15-16
Bao Chengxiao. Study on auto-focusing technology based on image processing[D]. Ji’nan: Shandong University, 2021: 15-16
|
[2] |
何帆. 基于图像模糊度预测的快速聚焦算法研究[D]. 重庆: 重庆邮电大学, 2021: 25-28
He Fan. Research on focusing algorithm based on image degree of blur prediction[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021: 25-28
|
[3] |
Groen F C A, Young I T, Ligthart G. A comparison of different focus functions for use in autofocus algorithms[J]. Cytometry, 1985, 6(2): 81-91. doi: 10.1002/cyto.990060202
|
[4] |
Firestone L, Cook K, Culp K, et al. Comparison of autofocus methods for automated microscopy[J]. Cytometry, 1991, 12(3): 195-206. doi: 10.1002/cyto.990120302
|
[5] |
王立昌. 监控摄像机的自动聚焦系统设计与实现[D]. 苏州: 苏州大学, 2015: 23-27
Wang Lichang. Design and implementation of network camera auto-focus system[D]. Suzhou: Suzhou University, 2015: 23-27
|
[6] |
王烨茹. 基于数字图像处理的自动对焦方法研究[D]. 杭州: 浙江大学, 2018: 90-91
Wang Yeru. Research on auto-focus methods based on digital imaging[D]. Hangzhou: Zhejiang University, 2018: 90-91
|
[7] |
Lee S Y, Kumar Y, Cho J M, et al. Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1237-1246. doi: 10.1109/TCSVT.2008.924105
|
[8] |
Liu Lianjie, Zheng Yayu, Feng Jiaqin, et al. A fast auto-focusing technique for multi-objective situation[C]//2010 International Conference on Computer Application and System Modeling. 2010: 607-610.
|
[9] |
李学胜. 家蚕微粒子病显微图像自动聚焦与识别方法研究[D]. 武汉: 湖北工业大学, 2021: 21-30
Li Xuesheng. Research on automatic focusing and recognition method of microscopic image of silkworm pebrine disease[D]. Wuhan: Hubei University of Technology, 2021: 21-30
|
[10] |
郭建, 赵显. 一种基于图像处理的快速自动聚焦算法[J]. 湘潭大学自然科学学报, 2012, 34(2):22-25 doi: 10.3969/j.issn.1000-5900.2012.02.005
Guo Jian, Zhao Xian. An improved auto focus algorithm based on image processing[J]. Natural Science Journal of Xiangtan University, 2012, 34(2): 22-25 doi: 10.3969/j.issn.1000-5900.2012.02.005
|
[11] |
Yousefi S, Rahman M, Kehtarnavaz N. A new auto-focus sharpness function for digital and smart-phone cameras[J]. IEEE Transactions on Consumer Electronics, 2011, 57(3): 1003-1009. doi: 10.1109/TCE.2011.6018848
|
[12] |
Zhang Yani, Zhang Ying, Wen Changyun. A new focus measure method using moments[J]. Image and Vision Computing, 2000, 18(12): 959-965. doi: 10.1016/S0262-8856(00)00038-X
|
[13] |
熊锐, 顾乃庭, 徐洪艳. 一种适应多方向灰度梯度变化的自动对焦评价函数[J]. 激光与光电子学进展, 2022, 59:0418001
Xiong Rui, Gu Naiting, Xu Hongyan. An auto-focusing evaluation function adapted to multi-directional gray gradient change[J]. Laser & Optoelectronics Progress, 2022, 59: 0418001
|
[14] |
熊锐. 基于数字图像处理的显微自动对焦技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 15-17
Xiong Rui. Study on microscopic autofocus technology based on digital image processing[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of sciences), 2021: 15-17
|
[15] |
尹爱军, 张焱, 杨彬, 等. 多窗口模式Roberts聚焦评价方法及其应用[J]. 重庆大学学报, 2011, 34(11):25-30 doi: 10.11835/j.issn.1000-582X.2011.11.005
Yin Aijun, Zhang Yan, Yang Bin, et al. Roberts focused evaluation method and its application in multi-windows mode[J]. Journal of Chongqing University, 2011, 34(11): 25-30 doi: 10.11835/j.issn.1000-582X.2011.11.005
|
[16] |
夏浩盛, 余飞鸿. 数码显微镜自动对焦算法[J]. 激光与光电子学进展, 2021, 58:0400002
Xia Haosheng, Yu Feihong. Auto focusing algorithm of digital microscope[J]. Laser & Optoelectronics Progress, 2021, 58: 0400002
|
[17] |
李斯文. 细胞筛选平台显微自动对焦系统研究[D]. 洛阳: 河南科技大学, 2017: 30-32
Li Siwen. Study on microscopic auto-focus system of cell screening platform[D]. Luoyang: Henan University of Science and Technology, 2017: 30-32
|
[18] |
李忠智, 尹航, 左剑凯, 等. 基于UNet++网络与多边输出融合策略的船舶检测模型[J]. 计算机工程, 2022, 48(4):276-283 doi: 10.19678/j.issn.1000-3428.0058696
Li Zhongzhi, Yin Hang, Zuo Jiankai, et al. Ship detection model based on UNet++ network and multiple side-output fusion strategy[J]. Computer Engineering, 2022, 48(4): 276-283 doi: 10.19678/j.issn.1000-3428.0058696
|
[19] |
彭方达. 基于语义分割的驾驶员安全带检测算法研究[D]. 郑州: 中原工学院, 2022: 18-21
Peng Fangda. Research on driver seat belt detection algorithm based on semantic segmentation[D]. Zhengzhou: Zhongyuan University of Technology, 2022: 18-21
|
[20] |
徐思则, 刘威. 基于UNet网络的乳腺癌肿瘤细胞图像分割[J]. 电子设计工程, 2022, 30(12):63-66,73 doi: 10.14022/j.issn1674-6236.2022.12.013
Xu Size, Liu Wei. UNet-based image segmentation of breast cancer tumor cells[J]. Electronic Design Engineering, 2022, 30(12): 63-66,73 doi: 10.14022/j.issn1674-6236.2022.12.013
|
[21] |
张杰, 唐立新, 陈子章, 等. 基于改进UNet网络的金丝球焊直径测量研究[J]. 现代制造工程, 2022(5):110-114 doi: 10.16731/j.cnki.1671-3133.2022.05.017
Zhang Jie, Tang Lixin, Chen Zizhang, et al. Research on diameter measurement of gold wire ball solder joints based on improved UNet network[J]. Modern Manufacturing Engineering, 2022(5): 110-114 doi: 10.16731/j.cnki.1671-3133.2022.05.017
|
[22] |
孟庆成, 李明健, 万达, 等. 基于M-Unet的混凝土裂缝实时分割算法[J]. 土木与环境工程学报, 2022:1-9
Meng Qingcheng, Li Mingjian, Wan Da, et al. Real-time segmentation algorithm of concrete cracks based on M-Unet[J]. Journal of Civil and Environmental Engineering, 2022: 1-9
|
[23] |
郭臻. 基于Unet深度学习的超级慢动作实践[J]. 现代电视技术, 2021(8):141-143 doi: 10.3969/j.issn.1671-8658.2021.08.034
Guo Zhen. Super slow motion practice based on U-Net deep learning[J]. Advanced Television Engineering, 2021(8): 141-143 doi: 10.3969/j.issn.1671-8658.2021.08.034
|
[24] |
张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述[J]. 激光与光电子学进展, 2022, 59:0200005
Zhang Huan, Qiu Dawei, Feng Yibo, et al. Improved U-Net models and its applications in medical image segmentation: a review[J]. Laser & Optoelectronics Progress, 2022, 59: 0200005
|
[25] |
葛云皓. 基于卷积神经网络的病理显微镜自动对焦与全局精准成像研究[D]. 上海: 上海交通大学, 2019: 20-30
Ge Yunhao. Automatic focusing and global precise imaging of pathological microscope based on convolutional neural network[D]. Shanghai: Shanghai Jiao Tong University, 2019: 20-30
|
[26] |
Nguyen T, Thai A, Adwani P, et al. Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks[C]//Digital Holography and Three-Dimensional Imaging. 2019: W3A. 32.
|
[27] |
王原, 马瑜, 江妍, 等. U-Net改进的视网膜血管图像分割算法[J]. 计算机工程与设计, 2021, 42(10):2884-2893 doi: 10.16208/j.issn1000-7024.2021.10.025
Wang Yuan, Ma Yu, Jiang Yan, et al. Improved retinal vascular image segmentation algorithm based on U-Net[J]. Computer Engineering and Design, 2021, 42(10): 2884-2893 doi: 10.16208/j.issn1000-7024.2021.10.025
|
[28] |
蔡畅, 陈军波, 陈心浩. 基于改进U-Net方法的脑肿瘤磁共振图像分割[J]. 中南民族大学学报(自然科学版), 2021, 40(4):417-423
Cai Chang, Chen Junbo, Chen Xinhao. MRI image segmentation of brain tumor based on improved U-Net method[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2021, 40(4): 417-423
|
[29] |
Zeng Zhenhuan, Fan Chaodong, Xiao Leyi, et al. DEA-UNet: a dense-edge-attention UNet architecture for medical image segmentation[J]. Journal of Electronic Imaging, 2022, 31: 043032.
|
[30] |
何承恩, 徐慧君, 王忠, 等. 多模态磁共振脑肿瘤图像自动分割算法研究[J]. 光学学报, 2020, 40:0610001 doi: 10.3788/AOS202040.0610001
He Cheng’en, Xu Huijun, Wang Zhong, et al. Automatic segmentation algorithm for multimodal magnetic resonance-based brain tumor images[J]. Acta Optica Sinica, 2020, 40: 0610001 doi: 10.3788/AOS202040.0610001
|