Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Xia Wenyou, Hao Fanhua, Wu Jian. Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier[J]. High Power Laser and Particle Beams, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101
Citation: Xia Wenyou, Hao Fanhua, Wu Jian. Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier[J]. High Power Laser and Particle Beams, 2022, 34: 116004. doi: 10.11884/HPLPB202234.220101

Plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier

doi: 10.11884/HPLPB202234.220101
  • Received Date: 2022-04-08
  • Rev Recd Date: 2022-07-20
  • Available Online: 2022-07-25
  • Publish Date: 2022-09-20
  • It is necessary to monitor plutonium aerosol when doing experimental research with plutonium material. Plutonium material experiments are usually carried out in sealed containers, which guarantees that the plutonium aerosol will not leak out to the environment. The widely-used monitoring equipment are not suitable for plutonium aerosol monitoring in sealed containers because of its large volume. A new plutonium aerosol measurement system based on wavelength shift fiber and silicon photomultiplier (SiPM) is developed. In the new plutonium aerosol measurement system, ZnS(Ag) scintillator is used as detection material and wavelength shift fiber is used as photon transmission media . The new plutonium aerosol measurement system has the advantages of customizable detector size and shape, low power consumption, and relatively simple structure, which realizes remote measurement of plutonium aerosol in sealed containers. The measurement system can also discriminate α particles in n/γ-mixed radiation field.
  • loading
  • [1]
    罗文宗, 张文青. 钚的分析化学[M]. 北京: 原子能出版社, 1991

    Luo Wenzong, Zhang Wenqing. Analytical chemistry of plutonium[M]. Beijing: Atomic Energy Press, 1991
    [2]
    李惠彬. 高氡环境下钚气溶胶连续监测技术研究及设备研制[D]. 北京: 清华大学, 2013: 1-3

    Li Huibin. Research on continuous plutonium aerosol monitor in high radon environment and equipment development[D]. Beijing: Tsinghua University, 2013: 1-3
    [3]
    [4]
    Mirion Technologies. ABPM 203MTM mobile alpha beta particulate monitor[EB/OL]. [2022-04-05]. https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/144101en-i_abpm-203m-mobile-alpha-beta-particulate-monitor.pdf?1580935176.
    [5]
    [6]
    Hoover M D, Newton G J. Performance testing of continuous air monitors for alpha-emitting radionuclides[J]. Radiat Prot Dosim, 1998, 79(1/4): 499-504.
    [7]
    García-Toraño E. A comparative study of minimization methods in the fitting of alpha-particle spectra[J]. Nucl Instrum Methods Phys Res Sect A, 1996, 369(2/3): 608-612.
    [8]
    Bortels G, Hurtgen C, Santry D. Nuclide analysis on low-statistics alpha-particle spectra: an experimental verification for Pu isotopes[J]. Appl Radiat Isot, 1995, 46(11): 1135-1144. doi: 10.1016/0969-8043(95)00156-8
    [9]
    Sánchez A M, Montero P R. Simplifying data fitting using branching ratios as constraints in alpha spectrometry[J]. Nucl Instrum Methods Phys Res Sect A, 1999, 420(3): 481-488. doi: 10.1016/S0168-9002(98)01179-6
    [10]
    Montero M P R, Orellana C J G, Velasco H G, et al. Fast adaptive alpha-particle spectrum fitting algorithm based on genetically estimated initial parameters[J]. Appl Radiat Isot, 2004, 60(2/4): 145-149.
    [11]
    Montero M P R, Sánchez A M, Lourtau A M C. Isotopic uranium and plutonium analysis by alpha-particle spectrometry[J]. Nucl Instrum Methods Phys Res Sect B, 2004, 213: 429-433. doi: 10.1016/S0168-583X(03)01585-4
    [12]
    黄宪果, 夏文友, 涂俊, 等. α放射性气溶胶连续测量的本底扣除技术及探测灵敏度研究[J]. 辐射防护, 2015, 35(2):93-96

    Huang Xianguo, Xia Wenyou, Tu Jun, et al. Research on nuclide natural background correction and detection sensitivity of continuous monitoring of alpha aerosols[J]. Radiat Prot, 2015, 35(2): 93-96
    [13]
    孟丹, 杨柳, 马英豪, 等. 高氡环境下放射性气溶胶在线监测仪的研制[J]. 辐射防护, 2020, 40(6):571-576

    Meng Dan, Yang Liu, Ma Yinghao, et al. Development of an on-line continuous aerosol monitor suitable for high radon environment[J]. Radiat Prot, 2020, 40(6): 571-576
    [14]
    谷铁男. 人工α放射性气溶胶监测中能量甄别方法研究[D]. 北京: 清华大学, 2012

    Gu Tienan. Study on energy discrimination method in artificial α radioactive aerosol monitoring[D]. Beijing: Tsinghua University, 2012
    [15]
    涂俊, 黄宪果, 穆龙, 等. 金硅面垒型半导体探测器在氢气环境下失效现象的实验研究[J]. 辐射防护通讯, 2012, 32(1):18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004

    Tu Jun, Huang Xianguo, Mu Long, et al. Research of failure of Au-Si surface barrier semiconductor detector in hydrogen condition[J]. Radiat Prot Bull, 2012, 32(1): 18-20 doi: 10.3969/j.issn.1004-6356.2012.01.004
    [16]
    汪传高, 骆志平, 庞洪超, 等. 低水平放射性测量的判断限和探测限[J]. 中国辐射卫生, 2018, 27(6):590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020

    Wang Chuangao, Luo Zhiping, Pang Hongchao, et al. Decision threshold and detection limit in low-levels of radioactivity measurements[J]. Chin J Radial Health, 2018, 27(6): 590-594 doi: 10.13491/j.issn.1004-714x.2018.06.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (676) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return