Li Weibin, Wu Yi, Ren Qinghua, et al. Synchronization signal processing system of thyristor power supply based on NI CompactRIO[J]. High Power Laser and Particle Beams, 2021, 33: 036003. doi: 10.11884/HPLPB202133.200296
Citation: Ci Yingjuan, Ren Fang, Zhang Jinyu, et al. Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing[J]. High Power Laser and Particle Beams, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105

Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing

doi: 10.11884/HPLPB202234.220105
  • Received Date: 2022-04-12
  • Accepted Date: 2022-06-23
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-27
  • Publish Date: 2022-09-20
  • We propose a weakly coupled polarization-maintaining few-mode fiber (PM-FMF) design with elliptical-core and bow-tie stress-applying areas. Using a high refractive index core, the proposed fiber can support 32 independent eigenmodes in the 1505−1585 nm band. The combination of the elliptical-core and bow-tie stress-applying area effectively separates the adjacent eigenmodes. The structural parameters of the elliptical-core and the bow-tie stress-applying area of the PM-FMF are optimized using the finite element method. The effects of fiber parameters on the number of modes, the minimum effective refractive index difference (Δneff, mim) between modes, the mode birefringence Bm, the stress birefringence Bs, and the bending loss are evaluated. The bandwidth performance of the fiber is also analyzed, including the effective refractive index neff, Δneff and differential mode delay (DMD) between adjacent modes. The results indicate that 32 eigenmodes supported by the fiber are completely separated with Δneff, min between adjacent modes larger than 1.295×10−4 in the 1505−1585 nm band. The fiber proposed can improve the transmission capacity and has potential applications in eigenmode multiplexing transmission.
  • [1]
    Hossain S B, Rahman T, Stojanović N, et al. Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications[J]. IEEE Photonics Technology Letters, 2021, 33(5): 263-266. doi: 10.1109/LPT.2021.3056005
    [2]
    Behera B, Mohanty M N. Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication[C]//Proceedings of 2019 International Conference on Applied Machine Learning (ICAML). 2019.
    [3]
    Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701. doi: 10.1109/JLT.2009.2039464
    [4]
    Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 2017, 35: 108-117. doi: 10.1016/j.yofte.2016.09.015
    [5]
    Bigot-Astruc M, Boivin D, Sillard P. Design and fabrication of weakly-coupled few-modes fibers[C]//Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series. 2012.
    [6]
    Yang Yi, Mo Qi, Fu Songnian, et al. Panda type elliptical core few-mode fiber[J]. APL Photonics, 2019, 4: 022901. doi: 10.1063/1.5038119
    [7]
    Xiao Han, Li Haisu, Wu Beilei, et al. Elliptical hollow-core optical fibers for polarization-maintaining few-mode guidance[J]. Optical Fiber Technology, 2019, 48: 7-11. doi: 10.1016/j.yofte.2018.12.003
    [8]
    Sun Yi, Lingle R, McCurdy A, et al. Few-mode fibers for mode-division multiplexing[C]//Proceedings of 2013 IEEE Photonics Society Summer Topical Meeting Series. 2013: 80-81.
    [9]
    Zhao Jiajia, Tang Ming, Oh K, et al. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core[J]. Photonics Research, 2017, 5(3): 261-266. doi: 10.1364/PRJ.5.000261
    [10]
    Zhang Jiwei, Wang Guorui, Zhang Han, et al. A weakly-coupled few-mode optical fiber with a graded concave high-index-ring[J]. IEEE Photonics Journal, 2021, 13: 7200710.
    [11]
    LaRochelle S, Corsi A, Chang J H, et al. Polarization maintaining few mode fibers for space division multiplexing[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2018.
    [12]
    Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2012, 24(5): 344-346. doi: 10.1109/LPT.2011.2178825
    [13]
    Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127. doi: 10.1364/OE.22.026117
    [14]
    Yang Tongxin, Zhang Hu, Xi Lixia, et al. Design of 18-mode hole-assisted elliptical-core polarization-maintaining few-mode fiber[J]. Optics Communications, 2022, 507: 127647. doi: 10.1016/j.optcom.2021.127647
    [15]
    Teng Fei, Jin Zhen, Chen Shuo, et al. Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber[C]//Proceedings of 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). 2020: 1-3.
    [16]
    Du Zhiyong, Wang Chuncan, Li Peixin, et al. Fully degeneracy-lifted PANDA few-mode fiber based on the segmented ring-core[J]. Optik, 2022, 255: 168710. doi: 10.1016/j.ijleo.2022.168710
    [17]
    Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Optics Letters, 1997, 22(20): 1553-1555. doi: 10.1364/OL.22.001553
    [18]
    Wemple S H, Pinnow D A, Rich T C, et al. Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations[J]. Journal of Applied Physics, 1973, 44(12): 5432-5437. doi: 10.1063/1.1662170
    [19]
    Guan Rongfeng, Zhu Fulong, Gan Zhiyin, et al. Stress birefringence analysis of polarization maintaining optical fibers[J]. Optical Fiber Technology, 2005, 11(3): 240-254. doi: 10.1016/j.yofte.2004.10.002
    [20]
    Milione G, Ip E, Ji P, et al. MIMO-less space division multiplexing with elliptical core optical fibers[C]//Proceedings of 2017 Optical Fiber Communication Conference. 2017.
    [21]
    Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343. doi: 10.1109/JLT.2014.2304732
    [22]
    Hu Tao, Li Juhao, Ge Dawei, et al. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission[J]. Optics Express, 2018, 26(7): 8356-8363. doi: 10.1364/OE.26.008356
  • Relative Articles

    [1]Liao Shibiao, Luo Tao, Xiao Runheng, Cheng Junjie, Shu Chang, Li Haiqing, Xing Yingbin, Dai Nengli, Li Jinyan. Breakthrough of 4 kW narrow linewidth linearly polarized laser based on a fiber oscillator laser and a homemade Yb-doped fiber[J]. High Power Laser and Particle Beams, 2023, 35(9): 091004. doi: 10.11884/HPLPB202335.230258
    [2]Xie Guoxing, Tan Fang, Zhang Yunlong, Gao Binhao, Cui Shunfa, Mu Wei, Zhu Xianhe. Bending resistant large mode field area few-mode photonic crystal fiber[J]. High Power Laser and Particle Beams, 2023, 35(12): 121002. doi: 10.11884/HPLPB202335.230046
    [3]Wang Yanshan, Feng Yujun, Peng Wanjing, Sun Yinhong, Yang Xiaobo, Wang Yao, Li Tenglong, Liu Hang, Ma Yi, Gao Qingsong, Tang Chun. 5 kW near diffraction limit high extinction ratio narrow linewidth polarization maintaining fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(11): 112002. doi: 10.11884/HPLPB202234.220330
    [4]Ren Shuai, Chen Yisha, Ma Pengfei, Li Wei, Wang Guangjian, Liu Wei, Zhou Pu. 4.5 kW, 0.33 nm near-single-mode narrow linewidth polarization-maintained fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(6): 065002. doi: 10.11884/HPLPB202234.220168
    [5]Tan Fang, Yang Qiang, Huo Muyi, Zhou Jing, Zhou Dechun, Xu Pengfei. Structural design and properties study of rectangular lattice high polarization low-loss-Bi-Ge-Ga photonic crystal fiber[J]. High Power Laser and Particle Beams, 2021, 33(10): 101002. doi: 10.11884/HPLPB202133.210128
    [6]Cao Dingxiang, Zhang Baofu, Wang Xinglong. An all-fiber, polarized, passively mode-locked thulium doped 2 μm fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(09): 091014. doi: 10.11884/HPLPB201426.091014
    [7]Ma Zairu, Zhou Guiyong. Experimental study on supercontinuum generation in birefringent microstructure fibers with 30 femtosecond pulse[J]. High Power Laser and Particle Beams, 2013, 25(10): 2577-2581. doi: 10.3788/HPLPB20132510.2577
    [8]Jia Weiguo, Qiao Lirong, Yang Jun, Zhang Junping, Menke Neimule. Influence of high-order dispersion on gain spectra in high-birefringence fiber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2791-2796. doi: 10.3788/HPLPB20122412.2791
    [9]zhao baoyin, duan kailiang, zhao wei. pectral characteristics of chirped fiber Bragg gratings in large-mode-area fibers[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [10]ren guangjun, yao jianquan. Double-end pump polarization-maintaining fiber laser[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [11]lu hui, zhang lijun, zheng zhanqi, zhang yiheng, leng yongqing, liao xianhua. Fiber-based vector-sum microwave photonic phase shifter[J]. High Power Laser and Particle Beams, 2011, 23(12): 12-13.
    [12]fu yuqing, duan zhichun, chen jianguo. Analysis of signal in multimode fiber amplifier[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [13]chen youjie, duan kailiang, zhao wei, . Paraxial propagation properties of waveguide modes in single-mode fiber[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [14]wang yanbin, chen zilun, hou jing, lu qisheng, liang dongming, zhang bin, peng yang, liu xiaoming. Effectively increasing mode field diameter of photonic crystal fibers[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]zhou ping, fan dianyuan. Narrowband terahertz source based on four-wave mixing[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [16]zhou ping, fan dianyuan. Narrowband terahertz source based on four-wave mixing[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [17]zhao xing-hai, gao yang, cheng yong-sheng. High power pulsed laser-induced damage to step-index multimode optical fibers[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [18]li deng-feng, zu xiao-tao, qiu yi-shen, dong hui-ning. Influence of birefringence coupling on propagation constant of Ti: LiNbO3 rectangle waveguide[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [19]wang ying jian, li qing guo, fan zheng xiu. Antireflection films coated on sapphire for high power laser system[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 顾余辉. 直线加速器维修维护及质控措施研究分析. 中国设备工程. 2024(07): 48-50 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.0 %FULLTEXT: 26.0 %META: 69.3 %META: 69.3 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.8 %其他: 0.8 %China: 0.7 %China: 0.7 %[]: 1.1 %[]: 1.1 %上海: 0.2 %上海: 0.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乐山: 0.1 %乐山: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.1 %六安: 0.1 %北京: 4.3 %北京: 4.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.7 %南京: 0.7 %南昌: 0.1 %南昌: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.2 %吉隆坡: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %宁波: 0.1 %宁波: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.7 %广州: 1.7 %张家口: 1.0 %张家口: 1.0 %德黑兰: 0.3 %德黑兰: 0.3 %成都: 1.1 %成都: 1.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.2 %杭州: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 2.4 %深圳: 2.4 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %烟台: 0.1 %烟台: 0.1 %秦皇岛: 0.5 %秦皇岛: 0.5 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 32.2 %芒廷维尤: 32.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %菏泽: 0.2 %菏泽: 0.2 %蒙彼利埃: 0.2 %蒙彼利埃: 0.2 %蒙特利尔: 0.3 %蒙特利尔: 0.3 %衡阳: 0.5 %衡阳: 0.5 %西宁: 35.0 %西宁: 35.0 %西安: 0.1 %西安: 0.1 %诺沃克: 2.7 %诺沃克: 2.7 %贵阳: 0.3 %贵阳: 0.3 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 1.2 %运城: 1.2 %郑州: 0.2 %郑州: 0.2 %重庆: 1.2 %重庆: 1.2 %银川: 0.1 %银川: 0.1 %长沙: 0.7 %长沙: 0.7 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.5 %青岛: 0.5 %其他其他China[]上海东莞中山临汾丹东乐山保定六安北京十堰南京南昌博阿努瓦台州合肥吉隆坡哥伦布嘉兴大连天津宁波宣城常州常德广州张家口德黑兰成都昆明晋城普洱杭州格兰特县武汉沈阳洛阳济南深圳温州湖州漯河烟台秦皇岛绵阳芒廷维尤芝加哥苏州菏泽蒙彼利埃蒙特利尔衡阳西宁西安诺沃克贵阳达尔斯运城郑州重庆银川长沙阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (837) PDF downloads(64) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return