Zhong Sha, He Yong, Qiu Kunzan, et al. Measurement of alkali content in Zhundong coal by LIBS method[J]. High Power Laser and Particle Beams, 2015, 27: 099002. doi: 10.11884/HPLPB201527.099002
Citation: Ci Yingjuan, Ren Fang, Zhang Jinyu, et al. Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing[J]. High Power Laser and Particle Beams, 2022, 34: 111006. doi: 10.11884/HPLPB202234.220105

Design of polarization-maintaining bow-tie elliptical-core few-mode fiber for mode-division-multiplexing

doi: 10.11884/HPLPB202234.220105
  • Received Date: 2022-04-12
  • Accepted Date: 2022-06-23
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-27
  • Publish Date: 2022-09-20
  • We propose a weakly coupled polarization-maintaining few-mode fiber (PM-FMF) design with elliptical-core and bow-tie stress-applying areas. Using a high refractive index core, the proposed fiber can support 32 independent eigenmodes in the 1505−1585 nm band. The combination of the elliptical-core and bow-tie stress-applying area effectively separates the adjacent eigenmodes. The structural parameters of the elliptical-core and the bow-tie stress-applying area of the PM-FMF are optimized using the finite element method. The effects of fiber parameters on the number of modes, the minimum effective refractive index difference (Δneff, mim) between modes, the mode birefringence Bm, the stress birefringence Bs, and the bending loss are evaluated. The bandwidth performance of the fiber is also analyzed, including the effective refractive index neff, Δneff and differential mode delay (DMD) between adjacent modes. The results indicate that 32 eigenmodes supported by the fiber are completely separated with Δneff, min between adjacent modes larger than 1.295×10−4 in the 1505−1585 nm band. The fiber proposed can improve the transmission capacity and has potential applications in eigenmode multiplexing transmission.
  • [1]
    Hossain S B, Rahman T, Stojanović N, et al. Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications[J]. IEEE Photonics Technology Letters, 2021, 33(5): 263-266. doi: 10.1109/LPT.2021.3056005
    [2]
    Behera B, Mohanty M N. Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication[C]//Proceedings of 2019 International Conference on Applied Machine Learning (ICAML). 2019.
    [3]
    Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701. doi: 10.1109/JLT.2009.2039464
    [4]
    Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 2017, 35: 108-117. doi: 10.1016/j.yofte.2016.09.015
    [5]
    Bigot-Astruc M, Boivin D, Sillard P. Design and fabrication of weakly-coupled few-modes fibers[C]//Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series. 2012.
    [6]
    Yang Yi, Mo Qi, Fu Songnian, et al. Panda type elliptical core few-mode fiber[J]. APL Photonics, 2019, 4: 022901. doi: 10.1063/1.5038119
    [7]
    Xiao Han, Li Haisu, Wu Beilei, et al. Elliptical hollow-core optical fibers for polarization-maintaining few-mode guidance[J]. Optical Fiber Technology, 2019, 48: 7-11. doi: 10.1016/j.yofte.2018.12.003
    [8]
    Sun Yi, Lingle R, McCurdy A, et al. Few-mode fibers for mode-division multiplexing[C]//Proceedings of 2013 IEEE Photonics Society Summer Topical Meeting Series. 2013: 80-81.
    [9]
    Zhao Jiajia, Tang Ming, Oh K, et al. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core[J]. Photonics Research, 2017, 5(3): 261-266. doi: 10.1364/PRJ.5.000261
    [10]
    Zhang Jiwei, Wang Guorui, Zhang Han, et al. A weakly-coupled few-mode optical fiber with a graded concave high-index-ring[J]. IEEE Photonics Journal, 2021, 13: 7200710.
    [11]
    LaRochelle S, Corsi A, Chang J H, et al. Polarization maintaining few mode fibers for space division multiplexing[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2018.
    [12]
    Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2012, 24(5): 344-346. doi: 10.1109/LPT.2011.2178825
    [13]
    Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127. doi: 10.1364/OE.22.026117
    [14]
    Yang Tongxin, Zhang Hu, Xi Lixia, et al. Design of 18-mode hole-assisted elliptical-core polarization-maintaining few-mode fiber[J]. Optics Communications, 2022, 507: 127647. doi: 10.1016/j.optcom.2021.127647
    [15]
    Teng Fei, Jin Zhen, Chen Shuo, et al. Neural network for the inverse design of polarization-maintaining few-mode panda-type ring-core fiber[C]//Proceedings of 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). 2020: 1-3.
    [16]
    Du Zhiyong, Wang Chuncan, Li Peixin, et al. Fully degeneracy-lifted PANDA few-mode fiber based on the segmented ring-core[J]. Optik, 2022, 255: 168710. doi: 10.1016/j.ijleo.2022.168710
    [17]
    Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Optics Letters, 1997, 22(20): 1553-1555. doi: 10.1364/OL.22.001553
    [18]
    Wemple S H, Pinnow D A, Rich T C, et al. Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations[J]. Journal of Applied Physics, 1973, 44(12): 5432-5437. doi: 10.1063/1.1662170
    [19]
    Guan Rongfeng, Zhu Fulong, Gan Zhiyin, et al. Stress birefringence analysis of polarization maintaining optical fibers[J]. Optical Fiber Technology, 2005, 11(3): 240-254. doi: 10.1016/j.yofte.2004.10.002
    [20]
    Milione G, Ip E, Ji P, et al. MIMO-less space division multiplexing with elliptical core optical fibers[C]//Proceedings of 2017 Optical Fiber Communication Conference. 2017.
    [21]
    Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343. doi: 10.1109/JLT.2014.2304732
    [22]
    Hu Tao, Li Juhao, Ge Dawei, et al. Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission[J]. Optics Express, 2018, 26(7): 8356-8363. doi: 10.1364/OE.26.008356
  • Relative Articles

  • Cited by

    Periodical cited type(5)

    1. 姚顺春,喻子彧,徐水秀,覃淮青,蒋源,陈伟泽,卢志民. 氩气环境下煤炭的激光诱导等离子体特性研究. 工程热物理学报. 2023(11): 3140-3150 .
    2. 郝晓剑,唐慧娟,胡晓涛. 金纳米与磁场作用下LIBS检测灵敏度改善研究. 光谱学与光谱分析. 2019(05): 1599-1603 .
    3. 钱燕,钟厦,何勇,Ronald Whiddon,王智化,岑可法. 激光波长对煤激光诱导击穿光谱特性影响的试验研究. 光谱学与光谱分析. 2017(06): 1890-1895 .
    4. 王希林,洪骁,王晗,赵晨龙,陈灿,贾志东,王黎明,邹林,李锐海,王颂,王俊,揭敢新. 室温硫化硅橡胶的激光诱导击穿光谱特性与老化研究. 中国电机工程学报. 2017(10): 2774-2782 .
    5. 吴柯岩,任忠国,苏容波,刘小亮,沈洁,胡碧涛. 双飞秒激光脉冲诱导击穿光谱增强特性研究. 强激光与粒子束. 2016(08): 41-45 . 本站查看

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 72.4 %META: 72.4 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 1.2 %其他: 1.2 %Central District: 0.2 %Central District: 0.2 %China: 0.5 %China: 0.5 %Denmark: 0.2 %Denmark: 0.2 %India: 0.4 %India: 0.4 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Lebanon: 0.2 %Lebanon: 0.2 %Puylaurens: 0.2 %Puylaurens: 0.2 %United States: 0.2 %United States: 0.2 %Vienna: 0.1 %Vienna: 0.1 %[]: 3.3 %[]: 3.3 %上海: 1.5 %上海: 1.5 %东京: 0.1 %东京: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %光州广域: 0.1 %光州广域: 0.1 %兰州: 0.2 %兰州: 0.2 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 19.2 %北京: 19.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南昌: 0.1 %南昌: 0.1 %卡尔帕卡姆: 0.3 %卡尔帕卡姆: 0.3 %台州: 0.1 %台州: 0.1 %合肥: 0.7 %合肥: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.5 %大庆: 0.5 %天津: 0.5 %天津: 0.5 %宜宾: 0.1 %宜宾: 0.1 %宣城: 0.3 %宣城: 0.3 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 1.3 %张家口: 1.3 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %斯特拉斯堡: 0.5 %斯特拉斯堡: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.2 %普林斯顿: 0.2 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 1.5 %漯河: 1.5 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 12.0 %芒廷维尤: 12.0 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %茨城: 0.2 %茨城: 0.2 %莫吉奥: 0.4 %莫吉奥: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 37.9 %西宁: 37.9 %西安: 0.7 %西安: 0.7 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阿布奎基: 0.1 %阿布奎基: 0.1 %隆格瑞莫: 0.2 %隆格瑞莫: 0.2 %马斯喀特: 0.2 %马斯喀特: 0.2 %黎巴嫩: 0.3 %黎巴嫩: 0.3 %其他其他Central DistrictChinaDenmarkIndiaIran (ISLAMIC Republic Of)Korea Republic ofLebanonPuylaurensUnited StatesVienna[]上海东京东莞中卫中山临汾丹东佛山光州广域兰州凤凰城加利福尼亚州北京十堰南京南昌卡尔帕卡姆台州合肥哈尔滨哥伦布嘉兴大庆天津宜宾宣城常州广州张家口成都扬州斯特拉斯堡无锡昆明晋城普林斯顿普洱朝阳杭州桃园武汉深圳温州湖州漯河潍坊石家庄秦皇岛纽瓦克绍兴芒廷维尤芝加哥苏州茨城莫吉奥衡阳衢州西宁西安达州运城连云港邯郸郑州鄂州重庆长沙长治阿布奎基隆格瑞莫马斯喀特黎巴嫩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (846) PDF downloads(64) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return