Ke Xizheng, Yang Shangjun, Wu Jiali, et al. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167
Citation: Chai Xiangxu, Wang Guanzhong, Tian Xiaolin, et al. Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window[J]. High Power Laser and Particle Beams, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119

Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window

doi: 10.11884/HPLPB202234.220119
  • Received Date: 2022-04-23
  • Accepted Date: 2022-08-19
  • Rev Recd Date: 2022-07-15
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • Vacuum window (VW) damage is the bottleneck restricting the load capacity of high-power laser device, and the influence of vacuum environment is worthy of attention. Firstly, based on the fluororubber ring seal, the laser-induced damage threshold (LIDT) of fused silica VW irradiated by the 351 nm laser was measured. It is found that the LIDT of the VW decreases by about 50% after the close contact with the fluororubber ring. After repeated extrusion, the influence of the fluororubber ring on the LIDT of the VW is significantly weakened. On this basis, the LIDTs of the VW under atmosphere, 103 Pa and 10−2~10−1 Pa are compared. The results show that the LIDT of vacuum window decreases significantly with the decrease of air pressure, and the LIDT does not increase after the air pressure rises again. In addition, the LIDT of the VW under different air pressure is tested based on indium ring sealing, while the effect of air pressure difference on the LIDT is not found. Comparing the results of the two sealing materials, it is considered that the LIDT decreasing of the VW is mainly caused by the release of organic contamination from fluororubber ring and the release of organic matter will be intensified under low pressure.
  • [1]
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [2]
    Carr C W, Bude J, Miller P E, et al. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation[C]//Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials 2017. 2017: 1044702.
    [3]
    Liao Z M, Carr C W, Cross D, et al. Damage performance of fused silica debris shield at the National Ignition Facility[C]//Proceedings of SPIE 11173, Laser-induced Damage in Optical Materials 2019. 2019: 111730Y.
    [4]
    Chai Xiangxu, Li Ping, Zhao Junpu, et al. Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation[J]. Optik, 2021, 226: 165549.
    [5]
    Gingreau C, Lanternier T, Lamaignère L, et al. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage[J]. Optics Letters, 2018, 43(8): 1706-1709. doi: 10.1364/OL.43.001706
    [6]
    徐世珍, 郑万国, 孙久勋, 等. 环境气氛压强对熔石英紫外激光损伤阈值的影响[J]. 强激光与粒子束, 2008, 20(10):1649-1652

    Xu Shizhen, Zheng Wanguo, Sun Jiuxun, et al. Effect of gas atmosphere and pressure on 351 nm laser-induced damage threshold of fused silica[J]. High Power Laser and Particle Beams, 2008, 20(10): 1649-1652
    [7]
    Demos S G, Burnham A, Wegner P, et al. Surface defect generation in optical materials under high fluence laser irradiation in vacuum[J]. Electronics Letters, 2000, 36(6): 566-567. doi: 10.1049/el:20000419
    [8]
    黄进, 周信达, 周晓燕, 等. 真空紫外激光辐照对熔石英表面氧空位的影响[J]. 真空科学与技术学报, 2014, 34(12):1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20

    Huang Jin, Zhou Xinda, Zhou Xiaoyan, et al. Oxygen-deficiency of fused silica surfaces induced by ultra violet pulsed laser irradiation in high vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20
    [9]
    夏莉, 李蔚. 低温容器材料在真空状态下放气率的研究进展[J]. 制冷与空调, 2016, 30(5):595-598

    Xia Li, Li Wei. Review of outgassing rate of the cryogenics-vessel material in vacuum[J]. Refrigeration and Air Conditioning, 2016, 30(5): 595-598
    [10]
    苗心向, 袁晓东, 吕海兵, 等. 激光装置污染物诱导光学元件表面损伤实验研究[J]. 中国激光, 2015, 42:0602001 doi: 10.3788/CJL201542.0602001

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing, et al. Experimental study of laser-induced damage of optical components surface owing to particle contamination in high power laser facility[J]. Chinese Journal of Lasers, 2015, 42: 0602001 doi: 10.3788/CJL201542.0602001
    [11]
    Liu Taixiang, Yang Ke, Zhang Zhuo, et al. Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics[J]. Optics Express, 2019, 27(8): 10705-10728. doi: 10.1364/OE.27.010705
    [12]
    苗心向, 袁晓东, 吕海兵. 基于微纳光纤的气溶胶探测应用技术[J]. 强激光与粒子束, 2014, 26:114103 doi: 10.11884/HPLPB201426.114103

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26: 114103 doi: 10.11884/HPLPB201426.114103
    [13]
    Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
    [14]
    于宏伟, 张蕊, 戎媛, 等. 氟橡胶结构及热稳定性研究[J]. 特种橡胶制品, 2020, 41(5):59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014

    Yu Hongwei, Zhang Rui, Rong Yuan, et al. Structure and thermal stability of fluororubber[J]. Special Purpose Rubber Products, 2020, 41(5): 59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014
    [15]
    刘玉魁, 杨建斌, 肖详正. 真空工程设计[M]. 北京: 化学工业出版社, 2016

    Liu Yukui, Yang Jianbin, Xiao Xiangzheng. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
    [16]
    Boling N L, Crisp M D, Dubé G. Laser induced surface damage[J]. Applied Optics, 1973, 12(4): 650-660. doi: 10.1364/AO.12.000650
    [17]
    冯焱, 董猛, 成永军. 橡胶材料在真空环境下的放气性能研究[C]//中国真空学会2014学术年会论文摘要集. 2014: 129-134

    Feng Yan, Dong Meng, Cheng Yongjun. Investigation of outgassing characteristic for synthetic rubber materials[C]//Proceedings of 2014 Academic Annual Meeting of the Chinese Vacuum Society. 2014: 129-134
  • Relative Articles

    [1]Zhang Zhiguang, Yang Huizhen, Liu Jinlong, Li Songheng, Su Hang, Luo Yuxiang, Wei Xiewen. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004. doi: 10.11884/HPLPB202133.210295
    [2]Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158
    [3]Wei Haobo, Dai Wanjun, Wang De’en, Yuan Qiang, Xue Qiao, Zhang Xin, Yang Ying, Zhao Junpu, Wei Xiaofeng, Hu Dongxia. Coupling correcting system with double deformable mirrors and double Hartman-Shack sensors[J]. High Power Laser and Particle Beams, 2017, 29(08): 081003. doi: 10.11884/HPLPB201729.170091
    [4]Xiang Rujian, Du Yinglei, Xu Honglai, Li Guohui, Wu Jing, Zhang Kai. Phase aberration correcting of a slab MOPA solid state laser with combined deformable mirrors[J]. High Power Laser and Particle Beams, 2015, 27(07): 071009. doi: 10.11884/HPLPB201527.071009
    [5]Chang Yan, Zhou Zhiqiang, Lü Yang, Yuan Xuewen, Xie Chuanlin. Design of embedded wavefront process and control system[J]. High Power Laser and Particle Beams, 2013, 25(S0): 67-70.
    [6]Lei Xiang, Dong Lizhi, Yang Ping, Yan Hu, Liu Wenjin, Wang Shuai, Xu Bing. Diagnostic method of wavefront aberration for gain mediums in slab lasers[J]. High Power Laser and Particle Beams, 2012, 24(07): 1651-1655.
    [7]han liqiang, wang qi, shida katsunori, li zhiquan. Improving fiber coupling efficiency of free space optical communication using blind optimization wavefront correction[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [8]ma huimin, zhang pengfei, zhang jinghui, fan chengyu, wang yingjian. Stochastic parallel gradient descent algorithm for adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [9]xie na, wang xiaodong, hu dongxia, dai wanjun, sun li, li qing, guo yi. Experimental study on wavefront correction in ultra-short laser facility[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [10]yang yuqiang, tan liying, ma jing. Effects of localized deformation on acquisition precision in inter-satellite laser communications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [11]xiang jing-song, yao zhou-shi, hu yu. Tracking algorithms for coupling space light distorted by turbulence into single mode fiber[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [12]li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
    [13]li xin-yang, jiang wen-han. Zernike modal wavefront reconstruction error of Hartmann sensor on measuring the atmosphere disturbed wavefront[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
    [14]liu tian hua, jiang zong fu, xu xiao jun, liu ze jin, zhao yi jun. Preliminary study on the compensation of the wavefront deformation inducedby freevortex aerodynamic window using AO system[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [15]shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
    [16]wan min, su yi, xiang ru-jian. Turbulence-induced low order aberrations of optical wavefronts in partial adaptive compensation with rayleigh beacon or sodium beacon[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [19]li xinyang, jiang wenhan, wang chunhong, xian hao. POWER SPECTRA DENSITY METHOD FOR CONTROL EFFECT ANALYSIS OF ADAPTIVE OPTICS SYSTEM[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(17)

    1. 张建磊,张友为,华丹琪,窦雨昂,党鹏涛. 动态水下环境无线光通信自适应合并接收技术. 光学学报. 2025(02): 169-179 .
    2. 高晓梅,舒玉婷,梁静远,王慧琴,赵黎,宋鹏,柯熙政. 通信激光器及其调制技术研究进展. 光通信研究. 2024(02): 92-103 .
    3. 柯程虎,陈明惠,梁静远,赵黎,王惠琴,王怡,柯熙政. OWC/RF混合通信系统研究进展. 应用光学. 2024(02): 237-248 .
    4. 李征,韩旭,柯熙政. 无线光通信一对多发射天线研究进展. 激光杂志. 2024(04): 1-15 .
    5. 冯灵霞,张亚娟,刘寒冰. 云计算智能嵌入式技术下光通信网络路由的研究. 激光杂志. 2024(06): 185-189 .
    6. 梁静远,庞明志,柯熙政. 无线光通信中大气湍流抑制方法. 电子测量与仪器学报. 2024(11): 1-14 .
    7. 陈铭杰,毕凯峰,黄潜. 基于光纤供能的双网融合通信恶意数据识别系统. 激光杂志. 2023(03): 170-174 .
    8. 梁静远,王醒醒,李征,张晓丹,宋鹏,赵黎,柯熙政. 水下无线光通信中关键技术的研究与进展. 数字海洋与水下攻防. 2023(02): 215-240 .
    9. 胡恢军,周菁菁,邓锋. 无线光通信系统多路信号串扰自适应抑制方法. 激光杂志. 2023(06): 177-181 .
    10. 杨尚君,梁静远,吴加丽,柯熙政. 逆向传输标定法校正自适应光学非共光路像差. 光学学报. 2023(12): 102-112 .
    11. 梁静远,林水清,韩美苗,宋鹏,赵黎,柯熙政. 自适应光学中的模式法. 现代应用物理. 2023(02): 21-36 .
    12. 柯熙政,梁静远,许东升,王佳帆. 无线光通信类脉冲位置调制技术研究进展. 光电工程. 2022(03): 3-21 .
    13. 张建磊,和晗昱,聂欢,邱晓芬,李佳琪,杨祎,贺锋涛. 各向异性海洋湍流DHPIM无线光通信性能分析. 光子学报. 2022(04): 87-99 .
    14. 梁静远,亢维龙,董壮,柯熙政,董可. 自由空间光通信系统光学天线技术研究进展. 光通信技术. 2022(04): 1-10 .
    15. 高晓梅,邢甜,高婉倩,董可,柯熙政. 无线光相干通信及其实验研究. 光通信技术. 2022(04): 37-45 .
    16. 梁静远,李梦茹,王佳帆,柯熙政. 无线光通信系统纠错编码研究进展. 物联网学报. 2022(03): 23-36 .
    17. 杨佳辉,张艳,肖晗,张子睿,顾子健,张云哲. 涡旋光干涉衍射综合试验仪的设计与制造. 大学物理实验. 2022(03): 90-93 .

    Other cited types(28)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.1 %FULLTEXT: 26.1 %META: 69.2 %META: 69.2 %PDF: 4.7 %PDF: 4.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %其他: 1.4 %其他: 1.4 %Brazil: 0.1 %Brazil: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 1.3 %China: 1.3 %Cordova: 0.1 %Cordova: 0.1 %Estonia: 0.1 %Estonia: 0.1 %Falls Church: 0.1 %Falls Church: 0.1 %France: 0.4 %France: 0.4 %Germany: 0.1 %Germany: 0.1 %India: 0.2 %India: 0.2 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Japan: 0.1 %Japan: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Malvern: 0.1 %Malvern: 0.1 %Morocco: 0.1 %Morocco: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Switzerland: 0.0 %Switzerland: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.9 %[]: 0.9 %三门峡: 0.0 %三门峡: 0.0 %上海: 1.5 %上海: 1.5 %东莞: 0.3 %东莞: 0.3 %中卫: 0.1 %中卫: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %九江: 0.0 %九江: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %列克星敦: 0.1 %列克星敦: 0.1 %包头: 0.1 %包头: 0.1 %北京: 5.1 %北京: 5.1 %北阿坎德: 0.1 %北阿坎德: 0.1 %南京: 1.0 %南京: 1.0 %南京市栖霞区: 0.1 %南京市栖霞区: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南阳: 0.0 %南阳: 0.0 %厦门: 0.2 %厦门: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %嘉峪关: 0.1 %嘉峪关: 0.1 %埃克塞特: 0.1 %埃克塞特: 0.1 %堪培拉: 0.0 %堪培拉: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %威斯康辛州: 0.0 %威斯康辛州: 0.0 %娄底: 0.1 %娄底: 0.1 %孟买: 0.1 %孟买: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.0 %安庆: 0.0 %安康: 0.5 %安康: 0.5 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.0 %宿迁: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %广州: 0.6 %广州: 0.6 %庆阳: 0.0 %庆阳: 0.0 %延安: 0.1 %延安: 0.1 %开封: 0.7 %开封: 0.7 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 1.5 %张家口: 1.5 %张家界: 0.1 %张家界: 0.1 %徐州: 0.0 %徐州: 0.0 %成都: 1.3 %成都: 1.3 %戴利城: 0.2 %戴利城: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %昌吉: 0.0 %昌吉: 0.0 %晋中: 0.1 %晋中: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.1 %杭州: 1.1 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %毕节: 0.0 %毕节: 0.0 %江门: 0.1 %江门: 0.1 %沃特福德: 0.2 %沃特福德: 0.2 %沈阳: 0.3 %沈阳: 0.3 %河池: 0.1 %河池: 0.1 %泉州: 0.0 %泉州: 0.0 %法尔肯施泰因: 0.5 %法尔肯施泰因: 0.5 %济南: 0.1 %济南: 0.1 %海口: 0.0 %海口: 0.0 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %漯河: 0.7 %漯河: 0.7 %澄迈: 0.0 %澄迈: 0.0 %烟台: 0.0 %烟台: 0.0 %玉林: 0.1 %玉林: 0.1 %班加罗尔: 0.1 %班加罗尔: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.0 %纽约: 0.0 %绵阳: 0.3 %绵阳: 0.3 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 22.3 %芒廷维尤: 22.3 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.8 %苏州: 0.8 %荆门: 0.1 %荆门: 0.1 %菏泽: 0.0 %菏泽: 0.0 %蔚山: 0.1 %蔚山: 0.1 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.6 %西宁: 32.6 %西安: 3.3 %西安: 3.3 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.0 %达州: 0.0 %运城: 0.7 %运城: 0.7 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂尔多斯: 0.0 %鄂尔多斯: 0.0 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %金奈: 0.1 %金奈: 0.1 %金昌: 0.0 %金昌: 0.0 %锡林郭勒盟: 0.0 %锡林郭勒盟: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.4 %长春: 0.4 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %防城港: 0.1 %防城港: 0.1 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.1 %阿什本: 0.1 %阿坝: 0.1 %阿坝: 0.1 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %青岛: 0.3 %青岛: 0.3 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.2 %香港: 0.2 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马赛: 0.3 %马赛: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他BrazilCentral DistrictChinaCordovaEstoniaFalls ChurchFranceGermanyIndiaIran (ISLAMIC Republic Of)JapanKao-sungKorea Republic ofMalvernMoroccoSaitamaSwitzerlandUnited States[]三门峡上海东莞中卫中山临汾丹东九江亚特兰大休斯敦佛山保定列克星敦包头北京北阿坎德南京南京市栖霞区南宁南昌南阳厦门台北台州台湾省合肥吉林呼和浩特咸阳哈尔滨哥伦布嘉兴嘉峪关埃克塞特堪培拉大连天津太原威斯康辛州娄底孟买宁波安庆安康宜宾宣城宿迁密蘇里城常州常德广州庆阳延安开封弗吉尼亚州张家口张家界徐州成都戴利城扬州新乡无锡昆明昌吉晋中晋城普洱朝阳杭州柳州格兰特县桂林榆林武汉毕节江门沃特福德沈阳河池泉州法尔肯施泰因济南海口淄博淮北淮安深圳温州渭南漯河澄迈烟台玉林班加罗尔白城石家庄福州秦皇岛纽约绵阳美国伊利诺斯芝加哥自贡芒廷维尤芝加哥苏州荆门菏泽蔚山蚌埠衡水衡阳衢州襄阳西宁西安诺沃克贵阳达州运城连云港邯郸郑州鄂尔多斯鄂州重庆金华金奈金昌锡林郭勒盟镇江长春长沙长治防城港阳泉阿什本阿坝雷德蒙德青岛首尔特别香港香港特别行政区马赛黄冈齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (718) PDF downloads(116) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return