Citation: | Chai Xiangxu, Wang Guanzhong, Tian Xiaolin, et al. Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window[J]. High Power Laser and Particle Beams, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119 |
[1] |
Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
|
[2] |
Carr C W, Bude J, Miller P E, et al. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation[C]//Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials 2017. 2017: 1044702.
|
[3] |
Liao Z M, Carr C W, Cross D, et al. Damage performance of fused silica debris shield at the National Ignition Facility[C]//Proceedings of SPIE 11173, Laser-induced Damage in Optical Materials 2019. 2019: 111730Y.
|
[4] |
Chai Xiangxu, Li Ping, Zhao Junpu, et al. Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation[J]. Optik, 2021, 226: 165549.
|
[5] |
Gingreau C, Lanternier T, Lamaignère L, et al. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage[J]. Optics Letters, 2018, 43(8): 1706-1709. doi: 10.1364/OL.43.001706
|
[6] |
徐世珍, 郑万国, 孙久勋, 等. 环境气氛压强对熔石英紫外激光损伤阈值的影响[J]. 强激光与粒子束, 2008, 20(10):1649-1652
Xu Shizhen, Zheng Wanguo, Sun Jiuxun, et al. Effect of gas atmosphere and pressure on 351 nm laser-induced damage threshold of fused silica[J]. High Power Laser and Particle Beams, 2008, 20(10): 1649-1652
|
[7] |
Demos S G, Burnham A, Wegner P, et al. Surface defect generation in optical materials under high fluence laser irradiation in vacuum[J]. Electronics Letters, 2000, 36(6): 566-567. doi: 10.1049/el:20000419
|
[8] |
黄进, 周信达, 周晓燕, 等. 真空紫外激光辐照对熔石英表面氧空位的影响[J]. 真空科学与技术学报, 2014, 34(12):1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20
Huang Jin, Zhou Xinda, Zhou Xiaoyan, et al. Oxygen-deficiency of fused silica surfaces induced by ultra violet pulsed laser irradiation in high vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20
|
[9] |
夏莉, 李蔚. 低温容器材料在真空状态下放气率的研究进展[J]. 制冷与空调, 2016, 30(5):595-598
Xia Li, Li Wei. Review of outgassing rate of the cryogenics-vessel material in vacuum[J]. Refrigeration and Air Conditioning, 2016, 30(5): 595-598
|
[10] |
苗心向, 袁晓东, 吕海兵, 等. 激光装置污染物诱导光学元件表面损伤实验研究[J]. 中国激光, 2015, 42:0602001 doi: 10.3788/CJL201542.0602001
Miao Xinxiang, Yuan Xiaodong, Lü Haibing, et al. Experimental study of laser-induced damage of optical components surface owing to particle contamination in high power laser facility[J]. Chinese Journal of Lasers, 2015, 42: 0602001 doi: 10.3788/CJL201542.0602001
|
[11] |
Liu Taixiang, Yang Ke, Zhang Zhuo, et al. Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics[J]. Optics Express, 2019, 27(8): 10705-10728. doi: 10.1364/OE.27.010705
|
[12] |
苗心向, 袁晓东, 吕海兵. 基于微纳光纤的气溶胶探测应用技术[J]. 强激光与粒子束, 2014, 26:114103 doi: 10.11884/HPLPB201426.114103
Miao Xinxiang, Yuan Xiaodong, Lü Haibing. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26: 114103 doi: 10.11884/HPLPB201426.114103
|
[13] |
Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
|
[14] |
于宏伟, 张蕊, 戎媛, 等. 氟橡胶结构及热稳定性研究[J]. 特种橡胶制品, 2020, 41(5):59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014
Yu Hongwei, Zhang Rui, Rong Yuan, et al. Structure and thermal stability of fluororubber[J]. Special Purpose Rubber Products, 2020, 41(5): 59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014
|
[15] |
刘玉魁, 杨建斌, 肖详正. 真空工程设计[M]. 北京: 化学工业出版社, 2016
Liu Yukui, Yang Jianbin, Xiao Xiangzheng. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
|
[16] |
Boling N L, Crisp M D, Dubé G. Laser induced surface damage[J]. Applied Optics, 1973, 12(4): 650-660. doi: 10.1364/AO.12.000650
|
[17] |
冯焱, 董猛, 成永军. 橡胶材料在真空环境下的放气性能研究[C]//中国真空学会2014学术年会论文摘要集. 2014: 129-134
Feng Yan, Dong Meng, Cheng Yongjun. Investigation of outgassing characteristic for synthetic rubber materials[C]//Proceedings of 2014 Academic Annual Meeting of the Chinese Vacuum Society. 2014: 129-134
|
[1] | Zhang Zhiguang, Yang Huizhen, Liu Jinlong, Li Songheng, Su Hang, Luo Yuxiang, Wei Xiewen. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004. doi: 10.11884/HPLPB202133.210295 |
[2] | Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158 |
[3] | Wei Haobo, Dai Wanjun, Wang De’en, Yuan Qiang, Xue Qiao, Zhang Xin, Yang Ying, Zhao Junpu, Wei Xiaofeng, Hu Dongxia. Coupling correcting system with double deformable mirrors and double Hartman-Shack sensors[J]. High Power Laser and Particle Beams, 2017, 29(08): 081003. doi: 10.11884/HPLPB201729.170091 |
[4] | Xiang Rujian, Du Yinglei, Xu Honglai, Li Guohui, Wu Jing, Zhang Kai. Phase aberration correcting of a slab MOPA solid state laser with combined deformable mirrors[J]. High Power Laser and Particle Beams, 2015, 27(07): 071009. doi: 10.11884/HPLPB201527.071009 |
[5] | Chang Yan, Zhou Zhiqiang, Lü Yang, Yuan Xuewen, Xie Chuanlin. Design of embedded wavefront process and control system[J]. High Power Laser and Particle Beams, 2013, 25(S0): 67-70. |
[6] | Lei Xiang, Dong Lizhi, Yang Ping, Yan Hu, Liu Wenjin, Wang Shuai, Xu Bing. Diagnostic method of wavefront aberration for gain mediums in slab lasers[J]. High Power Laser and Particle Beams, 2012, 24(07): 1651-1655. |
[7] | han liqiang, wang qi, shida katsunori, li zhiquan. Improving fiber coupling efficiency of free space optical communication using blind optimization wavefront correction[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- . |
[8] | ma huimin, zhang pengfei, zhang jinghui, fan chengyu, wang yingjian. Stochastic parallel gradient descent algorithm for adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[9] | xie na, wang xiaodong, hu dongxia, dai wanjun, sun li, li qing, guo yi. Experimental study on wavefront correction in ultra-short laser facility[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[10] | yang yuqiang, tan liying, ma jing. Effects of localized deformation on acquisition precision in inter-satellite laser communications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- . |
[11] | xiang jing-song, yao zhou-shi, hu yu. Tracking algorithms for coupling space light distorted by turbulence into single mode fiber[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
[12] | li you kuan, chen dong quan, du xiang wan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- . |
[13] | li xin-yang, jiang wen-han. Zernike modal wavefront reconstruction error of Hartmann sensor on measuring the atmosphere disturbed wavefront[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- . |
[14] | liu tian hua, jiang zong fu, xu xiao jun, liu ze jin, zhao yi jun. Preliminary study on the compensation of the wavefront deformation inducedby freevortex aerodynamic window using AO system[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- . |
[15] | shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- . |
[16] | wan min, su yi, xiang ru-jian. Turbulence-induced low order aberrations of optical wavefronts in partial adaptive compensation with rayleigh beacon or sodium beacon[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- . |
[19] | li xinyang, jiang wenhan, wang chunhong, xian hao. POWER SPECTRA DENSITY METHOD FOR CONTROL EFFECT ANALYSIS OF ADAPTIVE OPTICS SYSTEM[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- . |