Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Citation: Shi Junjie, Hao Jianhong, Zhang Fang, et al. Simulation of long-range transport of non-ideal hydrogen atom beams in vacuum environment[J]. High Power Laser and Particle Beams, 2022, 34: 124004. doi: 10.11884/HPLPB202234.220123

Simulation of long-range transport of non-ideal hydrogen atom beams in vacuum environment

doi: 10.11884/HPLPB202234.220123
  • Received Date: 2022-04-25
  • Accepted Date: 2022-09-01
  • Rev Recd Date: 2022-08-29
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • Neutral beam has potential applications in space debris cleanup and space exploration. As that neutral beam prepared by ion source is not ideal in practice, this paper simulates the long-range transmission effect of non-ideal hydrogen beam in vacuum environment. According to the degree of neutralization, non-ideal beams are divided into under-neutral beams and over-neutral beams. The effects of beam density, neutralization factor, spatial magnetic field and elastic scattering on the nonideal hydrogen beam are studied by establishing a quasi-electromagnetic model of beam transmission. The results show that the presence of negative hydrogen ions has no effect on the transmission of hydrogen atoms in the under-neutral beam, thus the bias magnetic field can be removed to reduce the volume and mass of the device. For the over-neutral beam, the loss ratio is related to the beam density and neutralization factor, that is, the higher the beam density, the greater the beam loss; the higher the neutralization factor, the higher the beam loss. The magnetic field and the elastic scattering between particles have no effect on the propagation of either the under-neutral or over-neutral beams.
  • [1]
    Kitamura S, Hayakawa Y, Kawamoto S. A reorbiter for large GEO debris objects using ion beam irradiation[J]. Acta Astronautica, 2014, 94(2): 725-735. doi: 10.1016/j.actaastro.2013.07.037
    [2]
    Bombardelli C, Peláez J. Ion beam shepherd for contactless space debris removal[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 916-920. doi: 10.2514/1.51832
    [3]
    马晓刚. 基于离子束的非接触式空间碎片清除方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017

    Ma Xiaogang. A study of contactless space debris removal based on ion-beam-propelled method[D]. Harbin: Harbin Institute of Technology, 2017
    [4]
    侯伟. 中性束加热等离子体数值模拟研究[D]. 衡阳: 南华大学, 2013

    Hou Wei. Numerical simulation of neutral beam heated plasma[D]. Hengyang: University of South China, 2013
    [5]
    谢亚红, 胡纯栋, 韦江龙, 等. CFETR中性束注入系统负离子束源概念设计[J]. 核聚变与等离子体物理, 2021, 41(4):628-634 doi: 10.16568/j.0254-6086.202104008

    Xie Yahong, Hu Chundong, Wei Jianglong, et al. Conceptual design of negative ion based beam source for CFETR neutral beam injector[J]. Nuclear Fusion and Plasma Physics, 2021, 41(4): 628-634 doi: 10.16568/j.0254-6086.202104008
    [6]
    胡立群, 张晓东, 姚若河. EAST托卡马克的中性束注入方案[J]. 核技术, 2006, 29(2):149-152 doi: 10.3321/j.issn:0253-3219.2006.02.018

    Hu Liqun, Zhang Xiaodong, Yao Ruohe. EAST neutral beam injection project for EAST Tokamak[J]. Nuclear Techniques, 2006, 29(2): 149-152 doi: 10.3321/j.issn:0253-3219.2006.02.018
    [7]
    Jason A J, Hudgings D W, Van Dyck O B. Neutralization of H beams by magnetic stripping[J]. IEEE Transactions on Nuclear Science, 1981, 28(3): 2703-2706. doi: 10.1109/TNS.1981.4331890
    [8]
    Hayashi K, Tanaka D, Araki H, et al. In situ spatial-profile monitoring of beam flux of neutral free radicals produced by photo-deionization of negative ion beams[J]. Applied Surface Science, 2009, 255(24): 9581-9584. doi: 10.1016/j.apsusc.2009.04.085
    [9]
    Lee C H, Chang D S, Oh B H, et al. Hydrogen beam extraction of penning ion source for compact neutron generator[C]//2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016: 1-3.
    [10]
    Dimov G I, Roslyakov G V. Conversion of a beam of negative hydrogen ions to atomic hydrogen in a plasma target at energies between 0.5 and 1 MeV[J]. Nuclear Fusion, 1975, 15(3): 551-553. doi: 10.1088/0029-5515/15/3/021
    [11]
    Tanaka M, Takeiri Y, Asano E, et al. Production of high-current large-area H beams by a bucket-type ion source equipped with a magnetic filter[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1412-1418. doi: 10.1109/27.650911
    [12]
    易书卷, 陈开芹, 蒋文, 等. 剥离氢负离子获得中性束[J]. 核聚变与等离子体物理, 1983, 3(3):166-169 doi: 10.16568/j.0254-6086.1983.03.007

    Yi Shujuan, Chen Kaiqin, Jiang Wen, et al. The neutral beam obtained by stripping H ions[J]. Nuclear Fusion and Plasma Physics, 1983, 3(3): 166-169 doi: 10.16568/j.0254-6086.1983.03.007
    [13]
    吴青峰, 陈银宝, 王修龙, 等. 粒子束中性化方案研究[J]. 中国原子能科学研究院年报, 2003:85

    Wu Qingfeng, Chen Yinbao, Wang Xiulong, et al. Study on neutralization scheme of particle beam[J]. Annual Report of China Institute of Atomic Energy, 2003: 85
    [14]
    易书卷, 蒋文, 李华君. 氢离子束通过气体靶获得中性束的实验结果[J]. 核聚变与等离子体物理, 1981, 1(2):103-106 doi: 10.16568/j.0254-6086.1981.02.007

    Yi Shujuan, Jiang Wen, Li Huajun. Experimental results on atomic hydrogen beams produced by hydrogen ions passing through gaseous targets[J]. Nuclear Fusion and Plasma Physics, 1981, 1(2): 103-106 doi: 10.16568/j.0254-6086.1981.02.007
    [15]
    Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85. doi: 10.1109/27.106800
    [16]
    郝建红, 王希, 张芳, 等. 随移动窗推进的带电粒子束团长程传输模拟分析[J]. 国防科技大学学报, 2021, 43(5):168-174 doi: 10.11887/j.cn.202105020

    Hao Jianhong, Wang Xi, Zhang Fang, et al. Simulation analysis of long-range propagation of charged particle beams propelled by moving window[J]. Journal of National University of Defense Technology, 2021, 43(5): 168-174 doi: 10.11887/j.cn.202105020
    [17]
    Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
    [18]
    沈硕, 郝建红, 张芳, 等. 氢原子束在大气长程传输中自剥离效应研究[J]. 强激光与粒子束, 2022, 34:064004

    Shen Shuo, Hao Jianhong, Zhang Fang, et al. Study on beam-induced-stripping effect of hydrogen atom beam in long distance propagation in atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 064004
  • Relative Articles

    [1]Rong Linyan, Mu Zhencheng, Zhou Wenzhong, Wan Maliang, Xie Zhexin, Wang Bo, Liu Meifei, Li Jian, Xu Xin’an, Zhang Hui, Li Song, Ouyang Huafu, Fu Shinian. RF power source system for boron neutron capture therapy test facility[J]. High Power Laser and Particle Beams, 2021, 33(5): 053007. doi: 10.11884/HPLPB202133.200307
    [2]Ji Ce, Zhou Liangji, Jiao Jian, Ren Fuchun, Chen Lin, Jiang Jihao, Zhao Yue. Reliability of large LTD device analysis[J]. High Power Laser and Particle Beams, 2018, 30(4): 045003. doi: 10.11884/HPLPB201830.170341
    [3]He Lu, Dai Bo, Zhang Dawei. Data compression for optical spectrum-encoding imaging system[J]. High Power Laser and Particle Beams, 2018, 30(9): 099002. doi: 10.11884/HPLPB201830.180090
    [4]Jiao Xiaoyi, Lin Jing, Cheng Xiaoming, Zhang Bin, Ding Yingchun. Imaging method for serial time-encoded amplified microscope[J]. High Power Laser and Particle Beams, 2016, 28(10): 101008. doi: 10.11884/HPLPB201628.160103
    [5]Zhang Yanhong, Sheng Liang, Zhang Mei. Simulation of ring-coded aperture imaging with space-variant point spread function and image restoration[J]. High Power Laser and Particle Beams, 2016, 28(12): 124003. doi: 10.11884/HPLPB201628.160067
    [6]Yang Pin, Yang Zhenghua, Li Jin, Dong Jianjun, Cao Zhurong, Yan Yadong, Wang Wei, Wei Mingzhi, Liu Shenye. Design and development of a static X-ray imaging system used on SG-Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(11): 2895-2899. doi: 10.3788/HPLPB20132511.2895
    [7]Yu Bo, Su Ming, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji, Liu Shenye. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610. doi: 10.3788/HPLPB20132510.2604
    [8]Yu Bo, Su Ming, Liu ShenYe, Huang Tianxuan, Chen Bolun, Jiang Wei, Pu Yudong, Yan Ji. Simulation on spatial resolution of scintillator arrays based on neutron penumbral imaging system[J]. High Power Laser and Particle Beams, 2012, 24(08): 1826-1830. doi: 10.3788/HPLPB20122408.1826
    [9]xu tao, wang feng, peng xiaoshi, liu shenye. Imaging velocity interferometer system for any reflector based on SG-Ⅲ prototype laser facility[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [10]liu lifeng, xiao shali, qian jiayu, liu shenye, wei minxi, chen bolun. Monochromatic backlight imaging on Z-pinch facility[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]yu bo, ying yangjun, xu haibo. Effect of scattered neutrons on point spread function in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [12]zhang xueshuang, zou yubin, lu yuanrong, tang guoyou, li hang, wen weiwei, wang sheng. Simulation of coded neutron source imaging by visible light[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [13]hao yi-dan, miao wen-yong, zhao zong-qing, yuan yong-teng. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [14]liu yuan-qiong, gao dang-zhong, liu li-xiang, luo qing, ye cheng-gang. Phase-contrast imaging with micro-focus X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
    [15]liu dong-jian, tang chang-huan, zhao zong-qing, dong jian-jun, an zhu. Image reconstruction technique for neutron penumbra imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [16]zhao zong-qing, ding yong-kun, liu dong-jian, tang chang-huan, wen shu-huai, pu yi-kang. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [17]zheng zhi-jian, cao lei-feng, zhang bao-han, ding yong-kun, jiang shao-en, li chao guang. Primary investigation of X-ray tomography with Gabor zone plate encode holography technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [18]cao lei feng, zheng zhi jian, ding yong kun, yu yan ning, li chao guang. Investigation of Xray ring aperture coded imaging technique[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 81.7 %META: 81.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %Canton: 0.1 %Canton: 0.1 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %United States: 0.5 %United States: 0.5 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %中山: 0.1 %中山: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %北京: 14.2 %北京: 14.2 %北海: 0.1 %北海: 0.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.2 %宿迁: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.7 %张家口: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.7 %杭州: 0.7 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.2 %洛阳: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 1.0 %深圳: 1.0 %湖州: 0.2 %湖州: 0.2 %漯河: 1.1 %漯河: 1.1 %玉林: 0.2 %玉林: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 15.0 %芒廷维尤: 15.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 52.4 %西宁: 52.4 %西安: 0.7 %西安: 0.7 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.9 %郑州: 0.9 %重庆: 0.4 %重庆: 0.4 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %韩国蔚山: 0.2 %韩国蔚山: 0.2 %其他CantonChinaIndiaKorea Republic ofUnited States[]上海中山乌鲁木齐北京北海十堰南京台州合肥呼和浩特哥伦布嘉兴天津太原安康宣城宿迁广州张家口成都扬州新乡昆明普洱杭州桃园武汉洛阳淮安深圳湖州漯河玉林石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安贵港贵阳运城郑州重庆长沙阳泉青岛韩国蔚山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (678) PDF downloads(84) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return