Citation: | Liu Ying, Jiang Tao, Yang Qi, et al. Study on grating feedback characteristics of distributed feedback quantum cascade laser[J]. High Power Laser and Particle Beams, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131 |
[1] |
Shu Hong, Suttinger M, Lyakh A, et al. Floquet-Bloch analysis for distributed feedback quantum cascade lasers with a non-rectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7.
|
[2] |
Sigler C, Wang Xiaodong, Mawst L J, et al. First-order grating TM coupling coefficients for distributed feedback quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 2018, 54: 2300207.
|
[3] |
Babichev A V, Gladyshev A G, Filimonov A V, et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm[J]. Technical Physics Letters, 2017, 43(7): 666-669. doi: 10.1134/S1063785017070173
|
[4] |
Dang Jingmin, Yu Haiye, Sun Yujing, et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017, 82: 183-191.
|
[5] |
Abramov P I, Budarin A S, Kuznetsov E V, et al. Quantum-cascade lasers in atmospheric optical communication lines: challenges and prospects (review)[J]. Journal of Applied Spectroscopy, 2020, 87(4): 579-600. doi: 10.1007/s10812-020-01041-y
|
[6] |
Babichev A V, Gladyshev A G, Kurochkin A S, et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018, 52(8): 1082-1085. doi: 10.1134/S1063782618080031
|
[7] |
Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm[J]. Optics Express, 2016, 24(16): 18799-18806. doi: 10.1364/OE.24.018799
|
[8] |
Cui Xiaojuan, Yu Runqing, Chen Weidong, et al. Development of a quantum cascade laser-based sensor for environmental HONO monitoring in the mid-infrared at 8 μm[J]. Journal of Lightwave Technology, 2019, 37(11): 2784-2791. doi: 10.1109/JLT.2018.2876672
|
[9] |
Tittel F K, Allred J J, Cao Yingchun , et al. Quantum cascade laser-based sensor system for nitric oxide detection[C]//Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. 2015: 9370.
|
[10] |
Wei Qianhe, Li Bincheng, Wang Jing, et al. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy[J]. Atmosphere, 2021, 12: 221. doi: 10.3390/atmos12020221
|
[11] |
Deng Yu, Zhao Binbin, Wang Xingguang, et al. Narrow linewidth characteristics of interband cascade lasers[J]. Applied Physics Letters, 2020, 116: 201101. doi: 10.1063/5.0006823
|
[12] |
Golyak I S, Morozov A N, Svetlichnyi S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3-12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019, 13(4): 557-564. doi: 10.1134/S1990793119040055
|
[13] |
Pierściński K, Kuźmicz A, Pierścińska D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 1901009.
|
[14] |
Zhao Yue, Zhang Jinchuan, Jia Zhiwei, et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 ℃ at λ ~ 7.2 μm[J]. Chinese Physics Letters, 2016, 33: 124201. doi: 10.1088/0256-307X/33/12/124201
|
[15] |
Briggs R M, Frez C, Fradet M, et al. Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth[J]. Optics Express, 2016, 24(13): 14589-14595. doi: 10.1364/OE.24.014589
|
[16] |
Zhou Wenjia, Wu Donghai, McClintock R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017, 4(10): 1228-1231. doi: 10.1364/OPTICA.4.001228
|
[17] |
Zhuo Ning, Zhang Jinchuan, Liu Fengqi, et al. Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1039-1042. doi: 10.1109/LPT.2013.2257716
|
[18] |
Cheng F M, Zhang J C, Zhao Y, et al. Study on the wavelength detuning distributed feedback quantum cascade lasers[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7523-7526. doi: 10.1166/jnn.2018.16044
|
[19] |
Faist J, Gmachl C, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672. doi: 10.1063/1.119208
|
[20] |
Chen C L. Foundations for guided-wave optics[M]. Hoboken: John Wiley & Sons, 2006.
|
[21] |
Streifer W, Scifres D, Burnham R. TM-mode coupling coefficients in guided-wave distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 1976, 12(2): 74-78. doi: 10.1109/JQE.1976.1069108
|
[22] |
Virtanen H, Uusitalo T, Dumitrescu M. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission[J]. Optical and Quantum Electronics, 2017, 49: 160. doi: 10.1007/s11082-017-0993-8
|