Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Liu Ying, Jiang Tao, Yang Qi, et al. Study on grating feedback characteristics of distributed feedback quantum cascade laser[J]. High Power Laser and Particle Beams, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131
Citation: Liu Ying, Jiang Tao, Yang Qi, et al. Study on grating feedback characteristics of distributed feedback quantum cascade laser[J]. High Power Laser and Particle Beams, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131

Study on grating feedback characteristics of distributed feedback quantum cascade laser

doi: 10.11884/HPLPB202234.220131
  • Received Date: 2022-04-28
  • Accepted Date: 2022-08-26
  • Rev Recd Date: 2022-06-27
  • Available Online: 2022-09-16
  • Publish Date: 2022-09-20
  • The grating feedback characteristics of distributed feedback (DFB) quantum cascade lasers with TM mode were simulated by difference time domain method. Comparative analysis was mainly focused on the optical properties of lateral coupled grating and ridge waveguide grating. The causes of differences, the effects of side wall angle on reflection spectrum and loss of grating were also investigated. The results show that the main factor influencing the Bragg wavelength is the effective refractive index, the optical limiting factor is the reason for the great difference of coupling coefficient between the two grating structures, the specular loss is minimum when the side wall angle of the grating is 90°. The relationship between grating period, duty cycle, etching depth and the coupling coefficient shows that the parameters not only affect the relative dielectric constant of grating, but also affects the light limiting factor, thus affecting the coupling coefficient; the coupling coefficient is proportional to the etching depth, and the variation of the coupling coefficient with duty cycle is smaller. Theoretical research on grating optical feedback characteristics is beneficial to improve the understanding of DFB quantum cascade lasers and promote the improvement and development of laser performances.
  • loading
  • [1]
    Shu Hong, Suttinger M, Lyakh A, et al. Floquet-Bloch analysis for distributed feedback quantum cascade lasers with a non-rectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7.
    [2]
    Sigler C, Wang Xiaodong, Mawst L J, et al. First-order grating TM coupling coefficients for distributed feedback quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 2018, 54: 2300207.
    [3]
    Babichev A V, Gladyshev A G, Filimonov A V, et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm[J]. Technical Physics Letters, 2017, 43(7): 666-669. doi: 10.1134/S1063785017070173
    [4]
    Dang Jingmin, Yu Haiye, Sun Yujing, et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017, 82: 183-191.
    [5]
    Abramov P I, Budarin A S, Kuznetsov E V, et al. Quantum-cascade lasers in atmospheric optical communication lines: challenges and prospects (review)[J]. Journal of Applied Spectroscopy, 2020, 87(4): 579-600. doi: 10.1007/s10812-020-01041-y
    [6]
    Babichev A V, Gladyshev A G, Kurochkin A S, et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018, 52(8): 1082-1085. doi: 10.1134/S1063782618080031
    [7]
    Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm[J]. Optics Express, 2016, 24(16): 18799-18806. doi: 10.1364/OE.24.018799
    [8]
    Cui Xiaojuan, Yu Runqing, Chen Weidong, et al. Development of a quantum cascade laser-based sensor for environmental HONO monitoring in the mid-infrared at 8 μm[J]. Journal of Lightwave Technology, 2019, 37(11): 2784-2791. doi: 10.1109/JLT.2018.2876672
    [9]
    Tittel F K, Allred J J, Cao Yingchun , et al. Quantum cascade laser-based sensor system for nitric oxide detection[C]//Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. 2015: 9370.
    [10]
    Wei Qianhe, Li Bincheng, Wang Jing, et al. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy[J]. Atmosphere, 2021, 12: 221. doi: 10.3390/atmos12020221
    [11]
    Deng Yu, Zhao Binbin, Wang Xingguang, et al. Narrow linewidth characteristics of interband cascade lasers[J]. Applied Physics Letters, 2020, 116: 201101. doi: 10.1063/5.0006823
    [12]
    Golyak I S, Morozov A N, Svetlichnyi S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3-12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019, 13(4): 557-564. doi: 10.1134/S1990793119040055
    [13]
    Pierściński K, Kuźmicz A, Pierścińska D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 1901009.
    [14]
    Zhao Yue, Zhang Jinchuan, Jia Zhiwei, et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 ℃ at λ ~ 7.2 μm[J]. Chinese Physics Letters, 2016, 33: 124201. doi: 10.1088/0256-307X/33/12/124201
    [15]
    Briggs R M, Frez C, Fradet M, et al. Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth[J]. Optics Express, 2016, 24(13): 14589-14595. doi: 10.1364/OE.24.014589
    [16]
    Zhou Wenjia, Wu Donghai, McClintock R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017, 4(10): 1228-1231. doi: 10.1364/OPTICA.4.001228
    [17]
    Zhuo Ning, Zhang Jinchuan, Liu Fengqi, et al. Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1039-1042. doi: 10.1109/LPT.2013.2257716
    [18]
    Cheng F M, Zhang J C, Zhao Y, et al. Study on the wavelength detuning distributed feedback quantum cascade lasers[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7523-7526. doi: 10.1166/jnn.2018.16044
    [19]
    Faist J, Gmachl C, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672. doi: 10.1063/1.119208
    [20]
    Chen C L. Foundations for guided-wave optics[M]. Hoboken: John Wiley & Sons, 2006.
    [21]
    Streifer W, Scifres D, Burnham R. TM-mode coupling coefficients in guided-wave distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 1976, 12(2): 74-78. doi: 10.1109/JQE.1976.1069108
    [22]
    Virtanen H, Uusitalo T, Dumitrescu M. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission[J]. Optical and Quantum Electronics, 2017, 49: 160. doi: 10.1007/s11082-017-0993-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (626) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return