Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132
Citation: Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010. doi: 10.11884/HPLPB202234.220132

A very compact inverse Compton scattering gamma-ray source

doi: 10.11884/HPLPB202234.220132
  • Received Date: 2022-04-29
  • Rev Recd Date: 2022-07-04
  • Available Online: 2022-07-09
  • Publish Date: 2022-08-22
  • Inverse Compton scattering X/gamma-ray source can produce quasi-monochromatic, continuously tunable, high brightness, small spot size, polarization precisely controllable, and ultrashort (ps or sub-ps) X-ray pulse in the energy regime ranging from tens keV to several MeV or even higher. Recently a 0.2−4.8 MeV quasi-monochromatic compact gamma-ray source with high peak spectral density based on the inverse Compton scattering has been proposed in the Department of Engineering Physics, Tsinghua University. This type of compact gamma-ray source will be used for advanced X/gamma-ray imaging application based on the nuclear resonance fluorescence. In this paper, we will present the optimization of the design.
  • loading
  • [1]
    Curtis D C. Advancements in nuclear waste assay[D]. Birmingham: University of Birmingham, 2008.
    [2]
    Willman C. Applications of gamma ray spectroscopy of spent nuclear fuel for safeguards and encapsulation[D]. Uppsala: Uppsala University, 2006.
    [3]
    Metzger F R. Resonance fluorescence in nuclei[M]//Frisch O R. Progress in Nuclear Physics. New York: Pergamon Press, 1959: 54-88.
    [4]
    Warren G, Caggiano J, Peplowski P. Potential applications of nuclear resonance fluorescence[J]. AIP Conference Proceedings, 2009, 1194: 106-119.
    [5]
    Smith L E, Tobin S, Ehinger M, et al. AFCI safeguards enhancement study: technology development roadmap[R]. PNNL-18099, 2008.
    [6]
    Pruet J, McNabb D P, Hagmann C A, et al. Detecting clandestine material with nuclear resonance fluorescence[J]. Journal of Applied Physics, 2006, 99: 123102. doi: 10.1063/1.2202005
    [7]
    Quiter B J, Laplace T, Ludewigt B A, et al. Nuclear resonance fluorescence in 240Pu[J]. Physical Review C, 2012, 86: 034307. doi: 10.1103/PhysRevC.86.034307
    [8]
    Litvinenko V N, Burnham B, Emamian M, et al. Gamma-ray production in a storage ring free-electron laser[J]. Physical Review Letters, 1997, 78(24): 4569-4572. doi: 10.1103/PhysRevLett.78.4569
    [9]
    Sprangle P, Ting A, Esarey E, et al. Tunable, short pulse hard X-rays from a compact laser synchrotron source[J]. Journal of Applied Physics, 1992, 72(11): 5032-5038. doi: 10.1063/1.352031
    [10]
    Schoenlein R W, Leemans W P, Chin A H, et al. Femtosecond X-ray pulses at 0.4 Å generated by 90 Thomson scattering: a tool for probing the structural dynamics of materials[J]. Science, 1996, 274(5285): 236-238. doi: 10.1126/science.274.5285.236
    [11]
    Ting A, Fischer R, Fisher A, et al. Observation of 20 eV X-ray generation in a proof-of-principle laser synchrotron source experiment[J]. Journal of Applied Physics, 1995, 78(1): 575-577. doi: 10.1063/1.360644
    [12]
    Huang Z R, Ruth R D. Laser-electron storage ring[J]. Physical Review Letters, 1998, 80(5): 976-979. doi: 10.1103/PhysRevLett.80.976
    [13]
    Variola A, Haissinski J, Loulergue A, et al. ThomX technical design report[R]. 2014.
    [14]
    Albert F, Anderson S G, Anderson G A, et al. Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays[J]. Optics Letters, 2010, 35(3): 354-356. doi: 10.1364/OL.35.000354
    [15]
    Korn G, LeGarrec B, Rus B. ELI extreme light infrastructure science and technology with ultra-intense lasers[C]//CLEO: Science and Innovations 2013. Optical Society of America, 2013: CTu2D. 7.
    [16]
    Wormser G, Barty C, Hajima R, et al. The white book of ELI nuclear physics Bucharest-Magurele, Romania[M]. 2010: 12.
    [17]
    郭威, 顾嘉辉, 蔡翔舟, 等. 建立激光同步辐射源的初步探讨[J]. 强激光与粒子束, 2002, 14(5):787-791

    Guo Wei, Gu Jiahui, Cai Xiangzhou, et al. Preliminary discussion of laser synchrotron source construction[J]. High Power Laser and Particle Beams, 2002, 14(5): 787-791
    [18]
    Luo Wen, Xu W, Pan Q Y, et al. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics[J]. Review of Scientific Instruments, 2010, 81: 013304. doi: 10.1063/1.3282445
    [19]
    Du Yingchao, Yan Lixin, Hua Jianfei, et al. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source[J]. Review of Scientific Instruments, 2013, 84: 053301. doi: 10.1063/1.4803671
    [20]
    Du Yingchao, Yan Lixin, Hua Jianfei, et al. Soft X-ray generation experiment at the Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S168-S171.
    [21]
    Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article views (1553) PDF downloads(270) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return