Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34: 104012. doi: 10.11884/HPLPB202234.220134
Citation: Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34: 104012. doi: 10.11884/HPLPB202234.220134

Terahertz source based on relativistic electron beams

doi: 10.11884/HPLPB202234.220134
  • Received Date: 2022-04-30
  • Rev Recd Date: 2022-06-27
  • Available Online: 2022-07-07
  • Publish Date: 2022-08-22
  • Terahertz radiation has important prospects in fundamental science and industrial applications, but traditional electronic and optical methods can hardly generate high-power, narrow-band and continuously tunable coherent terahertz radiation at 1−10 THz. Accelerator-based terahertz sources using relativistic ultrashort electron beams or pre-modulated electron bunch trains have the possibility to generate tunable high spectral energy density narrow-band terahertz radiation in the above-mentioned range. This article reviews the recent theoretical and experimental progresses of the Tsinghua University Accelerator Laboratory in accelerator terahertz sources based on relativistic electron beams, as well as the terahertz radiation measurement, beam diagnosis and advanced acceleration technologies developed together with the accelerator terahertz sources.
  • loading
  • [1]
    Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 2013, 7(9): 680-690. doi: 10.1038/nphoton.2013.184
    [2]
    Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 2017, 16(11): 1077-1088. doi: 10.1038/nmat5017
    [3]
    Baierl S, Hohenleutner M, Kampfrath T, et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11): 715-718. doi: 10.1038/nphoton.2016.181
    [4]
    Jin Zuanming, Tkach A, Casper F, et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes[J]. Nature Physics, 2015, 11(9): 761-766. doi: 10.1038/nphys3384
    [5]
    Fleischer S, Zhou Yan, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 2011, 107: 163603. doi: 10.1103/PhysRevLett.107.163603
    [6]
    Lu Jian, Li Xian, Hwang H Y, et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves[J]. Physical Review Letters, 2017, 118: 207204. doi: 10.1103/PhysRevLett.118.207204
    [7]
    Zhang Xicheng, Xu Jingzhou. Introduction to THz wave photonics[M]. New York: Springer, 2010.
    [8]
    Horiuchi N. Bright terahertz sources[J]. Nature Photonics, 2013, 7(9): 670-671. doi: 10.1038/nphoton.2013.231
    [9]
    Wen Xiaodong, Huang Senlin, Lin Lin, et al. Superradiant THz undulator radiation source based on a superconducting photo-injector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820: 75-79.
    [10]
    Zhao Gang, Huang Senlin, Qin Weilun, et al. Tunable high-power terahertz free electron laser amplifier[C]//Proceedings of FEL. 2015: 305-307.
    [11]
    Zhao Gang, Zhao Sheng, Huang Senlin, et al. Strong electron density modulation with a low-power THz source for generating THz superradiant undulator radiation[J]. Physical Review Accelerators and Beams, 2019, 22: 060701. doi: 10.1103/PhysRevAccelBeams.22.060701
    [12]
    Zhu Juanfeng, Du Chaohai, Li Fanhong, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 2019, 7: 181184-181190. doi: 10.1109/ACCESS.2019.2938270
    [13]
    Liang Linbo, Liu Weihao, Jia Qika, et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches[J]. Physics of Plasmas, 2019, 26: 013102. doi: 10.1063/1.5064865
    [14]
    Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse[J]. Physical Review Accelerators and Beams, 2020, 23: 020704. doi: 10.1103/PhysRevAccelBeams.23.020704
    [15]
    Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Tuning electron bunch with a longitudinally shaped laser to generate half-cycle terahertz radiation pulse[J]. Journal of Instrumentation, 2021, 16: P08019. doi: 10.1088/1748-0221/16/08/P08019
    [16]
    Wu Dai, Li Ming, Yang Xinfan, et al. First lasing of the CAEP THz FEL facility driven by a superconducting accelerator[J]. Journal of Physics: Conference Series, 2018, 1067: 032010. doi: 10.1088/1742-6596/1067/3/032010
    [17]
    Wu Dai, Zhou K, Yan L G, et al. Design of high-repetition terahertz super-radiation based on CAEP THz FEL superconducting beamline[C]//Proceedings of the 39th Free Electron Laser Conference. 2019: 73-76.
    [18]
    Liu Xu, Liu Kaifeng, Qin Bin, et al. Optical alignment and tuning system for the HUST THz-FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 837: 58-62.
    [19]
    Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
    [20]
    Svidzinsky A A, Yuan Luqi, Scully M O. Quantum amplification by superradiant emission of radiation[J]. Physical Review X, 2013, 3: 041001.
    [21]
    Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 1954, 93(1): 99-110. doi: 10.1103/PhysRev.93.99
    [22]
    Gover A, Ianconescu R, Friedman A, et al. Superradiant and stimulated-superradiant emission of bunched electron beams[J]. Reviews of Modern Physics, 2019, 91: 035003. doi: 10.1103/RevModPhys.91.035003
    [23]
    Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
    [24]
    Wang Dan, Yan Lixin, Du Yingchao, et al. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching[J]. Review of Scientific Instruments, 2013, 84: 022704. doi: 10.1063/1.4790430
    [25]
    Yan Lixin, Du Qiang, Du Yingchao, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S127-S129.
    [26]
    Weling A S, Auston D H. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space[J]. Journal of the Optical Society of America B, 1996, 13(12): 2783-2792. doi: 10.1364/JOSAB.13.002783
    [27]
    Siders C W, Siders J L W, Taylor A J, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 1998, 37(22): 5302-5305. doi: 10.1364/AO.37.005302
    [28]
    Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 2012, 78(s4): 429-431.
    [29]
    Yan Lixin, Du Qiang, Du Yingchao, et al. Ultrashort electron bunch train production by UV laser pulse stacking[C]//Proceedings of 1st International Particle Accelerator Conference. 2010: 3210-3212.
    [30]
    You Yan, Yan Lixin, Du Yingchao, et al. High power THz source based on coherent radiation of picosecond relativistic electron bunch train[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 197-200.
    [31]
    Su Xiaolu, Wang Dan, Yan Lixin, et al. Measurement of pre-bunched beam’s longitudinal form factor based on radiation from a tunable-gap undulator[J]. Review of Scientific Instruments, 2018, 89: 013304. doi: 10.1063/1.5010031
    [32]
    Wang Dan, Yan Lixin, Du Yingchao, et al. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train[J]. Physical Review Accelerators and Beams, 2018, 21: 024403. doi: 10.1103/PhysRevAccelBeams.21.024403
    [33]
    Wang Dan, Zhang Hongze, Tian Qili, et al. Twin-bunch compression via velocity bunching in a traveling wave accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 084403. doi: 10.1103/PhysRevAccelBeams.21.084403
    [34]
    Musumeci P, Li Renkai, Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams[J]. Physical Review Letters, 2011, 106: 184801. doi: 10.1103/PhysRevLett.106.184801
    [35]
    Musumeci P, Li Renkai, Roberts K G, et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 100701. doi: 10.1103/PhysRevSTAB.16.100701
    [36]
    Zhang Zhen, Yan Lixin, Du Yingchao, et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation[J]. Physical Review Letters, 2016, 116: 184801. doi: 10.1103/PhysRevLett.116.184801
    [37]
    Feng Hanqi, Zhou Zheng, Wu Yipeng, et al. Generation of tunable 10-mJ-level terahertz pulses through nonlinear plasma wakefield modulation[J]. Physical Review Applied, 2021, 15: 044032. doi: 10.1103/PhysRevApplied.15.044032
    [38]
    Feng Hanqi, Yan Lixin, Wu Yipeng, et al. Near-ideal energy modulator for tunable THz pulse generation using sectioned hollow channel plasma system[J]. Physics of Plasmas, 2021, 28: 103101. doi: 10.1063/5.0062371
    [39]
    Zhang Zhen, Yan Lixin, Du Yingchao, et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam[J]. Physical Review Accelerators and Beams, 2017, 20: 050701. doi: 10.1103/PhysRevAccelBeams.20.050701
    [40]
    Gover A, Sprangle P. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers[J]. IEEE Journal of Quantum Electronics, 1981, 17(7): 1196-1215. doi: 10.1109/JQE.1981.1071257
    [41]
    Liang Yifan, Du Yingchao, Su Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 2018, 112: 053501. doi: 10.1063/1.5009396
    [42]
    Liang Yifan, Du Yingchao, Wang Dan, et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches[J]. Applied Physics Letters, 2018, 113: 171104. doi: 10.1063/1.5054583
    [43]
    Su Xiaolu, Yan Lixin, Wang Dan, et al. Recent experimental results on high-peak-current electron bunch and bunch trains interacting with a THz undulator[C]//Proceedings of the 38th International Free Electron Laser Conference. 2017: 474-476.
    [44]
    Su Xiaolu, Wang Dan, Tian Qili, et al. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU[J]. Journal of Instrumentation, 2018, 13: C01020. doi: 10.1088/1748-0221/13/01/C01020
    [45]
    Antipov S, Baryshev S V, Kostin R, et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide[J]. Applied Physics Letters, 2016, 109: 142901. doi: 10.1063/1.4963762
    [46]
    Wang Dan, Su Xiaolu, Du Yingchao, et al. Non-perturbing THz generation at the Tsinghua University Accelerator Laboratory 31 MeV electron beamline[J]. Review of Scientific Instruments, 2018, 89: 093301. doi: 10.1063/1.5042006
    [47]
    Wang Dan, Su Xiaolu, Tian Qili, et al. Preliminary results on the resonant excitation of THz wakefield in a multi-mode dielectric loaded waveguide by bunch train[C]//Proceedings of IPAC. 2017: 3426-3428.
    [48]
    Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z
    [49]
    Yu Zijia, Zhang Liwen, Liu Weihao, et al. Coherent terahertz emission using metasurfaces to intercept a flat electron beam[J]. Physical Review Applied, 2022, 17: 014038. doi: 10.1103/PhysRevApplied.17.014038
    [50]
    Kaminer I, Kooi S E, Shiloh R, et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder[J]. Physical Review X, 2017, 7: 011003.
    [51]
    Liu Wenxin, Huang Wenhui, Du Yingchao, et al. Terahertz coherent transition radiation based on an ultrashort electron bunching beam[J]. Chinese Physics B, 2011, 20: 074102. doi: 10.1088/1674-1056/20/7/074102
    [52]
    Wang Wei, Du Yingchao, Yan Lixin, et al. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches[J]. Physical Review Accelerators and Beams, 2017, 20: 112801. doi: 10.1103/PhysRevAccelBeams.20.112801
    [53]
    Tian Qili, Du Yingchao, Xu Hanxun, et al. Single-shot spatial-temporal electric field measurement of intense terahertz pulses from coherent transition radiation[J]. Physical Review Accelerators and Beams, 2020, 23: 102802. doi: 10.1103/PhysRevAccelBeams.23.102802
    [54]
    Li Qian, Stoica V A, Paściak M, et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 2021, 592(7854): 376-380. doi: 10.1038/s41586-021-03342-4
    [55]
    Disa A S, Nova T F, Cavalleri A. Engineering crystal structures with light[J]. Nature Physics, 2021, 17(10): 1087-1092. doi: 10.1038/s41567-021-01366-1
    [56]
    Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1
    [57]
    Baldini E, Belvin C A, Rodriguez-Vega M, et al. Discovery of the soft electronic modes of the trimeron order in magnetite[J]. Nature Physics, 2020, 16(5): 541-545. doi: 10.1038/s41567-020-0823-y
    [58]
    Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
    [59]
    Kurihara T, Watanabe H, Nakajima M, et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field[J]. Physical Review Letters, 2018, 120: 107202. doi: 10.1103/PhysRevLett.120.107202
    [60]
    Maag T, Bayer A, Baierl S, et al. Coherent cyclotron motion beyond Kohn’s theorem[J]. Nature Physics, 2016, 12(2): 119-123. doi: 10.1038/nphys3559
    [61]
    Su Xiaolu, Yan Lixin, Du Yingchao, et al. Monitoring of electron bunch length by using Terahertz coherent transition radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 402: 157-161. doi: 10.1016/j.nimb.2017.03.016
    [62]
    Wang Dan, Su Xiaolu, Yan Lixin, et al. Phase control with two-beam interferometry method in a terahertz dielectric Wakefield accelerator[J]. Applied Physics Letters, 2017, 111: 174102. doi: 10.1063/1.4999959
    [63]
    Hanuka A, Emma C, Maxwell T, et al. Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics[J]. Scientific Reports, 2021, 11: 2945. doi: 10.1038/s41598-021-82473-0
    [64]
    Konoplev I V, Doucas G, Harrison H, et al. Single shot, nondestructive monitor for longitudinal subpicosecond bunch profile measurements with femtosecond resolution[J]. Physical Review Accelerators and Beams, 2021, 24: 022801. doi: 10.1103/PhysRevAccelBeams.24.022801
    [65]
    Xu Hanxun, Yan Lixin, Du Yingchao, et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 2021, 15(6): 426-430. doi: 10.1038/s41566-021-00779-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article views (975) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return