Citation: | Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34: 104012. doi: 10.11884/HPLPB202234.220134 |
[1] |
Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 2013, 7(9): 680-690. doi: 10.1038/nphoton.2013.184
|
[2] |
Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 2017, 16(11): 1077-1088. doi: 10.1038/nmat5017
|
[3] |
Baierl S, Hohenleutner M, Kampfrath T, et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11): 715-718. doi: 10.1038/nphoton.2016.181
|
[4] |
Jin Zuanming, Tkach A, Casper F, et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes[J]. Nature Physics, 2015, 11(9): 761-766. doi: 10.1038/nphys3384
|
[5] |
Fleischer S, Zhou Yan, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 2011, 107: 163603. doi: 10.1103/PhysRevLett.107.163603
|
[6] |
Lu Jian, Li Xian, Hwang H Y, et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves[J]. Physical Review Letters, 2017, 118: 207204. doi: 10.1103/PhysRevLett.118.207204
|
[7] |
Zhang Xicheng, Xu Jingzhou. Introduction to THz wave photonics[M]. New York: Springer, 2010.
|
[8] |
Horiuchi N. Bright terahertz sources[J]. Nature Photonics, 2013, 7(9): 670-671. doi: 10.1038/nphoton.2013.231
|
[9] |
Wen Xiaodong, Huang Senlin, Lin Lin, et al. Superradiant THz undulator radiation source based on a superconducting photo-injector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820: 75-79.
|
[10] |
Zhao Gang, Huang Senlin, Qin Weilun, et al. Tunable high-power terahertz free electron laser amplifier[C]//Proceedings of FEL. 2015: 305-307.
|
[11] |
Zhao Gang, Zhao Sheng, Huang Senlin, et al. Strong electron density modulation with a low-power THz source for generating THz superradiant undulator radiation[J]. Physical Review Accelerators and Beams, 2019, 22: 060701. doi: 10.1103/PhysRevAccelBeams.22.060701
|
[12] |
Zhu Juanfeng, Du Chaohai, Li Fanhong, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 2019, 7: 181184-181190. doi: 10.1109/ACCESS.2019.2938270
|
[13] |
Liang Linbo, Liu Weihao, Jia Qika, et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches[J]. Physics of Plasmas, 2019, 26: 013102. doi: 10.1063/1.5064865
|
[14] |
Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse[J]. Physical Review Accelerators and Beams, 2020, 23: 020704. doi: 10.1103/PhysRevAccelBeams.23.020704
|
[15] |
Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Tuning electron bunch with a longitudinally shaped laser to generate half-cycle terahertz radiation pulse[J]. Journal of Instrumentation, 2021, 16: P08019. doi: 10.1088/1748-0221/16/08/P08019
|
[16] |
Wu Dai, Li Ming, Yang Xinfan, et al. First lasing of the CAEP THz FEL facility driven by a superconducting accelerator[J]. Journal of Physics: Conference Series, 2018, 1067: 032010. doi: 10.1088/1742-6596/1067/3/032010
|
[17] |
Wu Dai, Zhou K, Yan L G, et al. Design of high-repetition terahertz super-radiation based on CAEP THz FEL superconducting beamline[C]//Proceedings of the 39th Free Electron Laser Conference. 2019: 73-76.
|
[18] |
Liu Xu, Liu Kaifeng, Qin Bin, et al. Optical alignment and tuning system for the HUST THz-FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 837: 58-62.
|
[19] |
Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
|
[20] |
Svidzinsky A A, Yuan Luqi, Scully M O. Quantum amplification by superradiant emission of radiation[J]. Physical Review X, 2013, 3: 041001.
|
[21] |
Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 1954, 93(1): 99-110. doi: 10.1103/PhysRev.93.99
|
[22] |
Gover A, Ianconescu R, Friedman A, et al. Superradiant and stimulated-superradiant emission of bunched electron beams[J]. Reviews of Modern Physics, 2019, 91: 035003. doi: 10.1103/RevModPhys.91.035003
|
[23] |
Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
|
[24] |
Wang Dan, Yan Lixin, Du Yingchao, et al. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching[J]. Review of Scientific Instruments, 2013, 84: 022704. doi: 10.1063/1.4790430
|
[25] |
Yan Lixin, Du Qiang, Du Yingchao, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S127-S129.
|
[26] |
Weling A S, Auston D H. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space[J]. Journal of the Optical Society of America B, 1996, 13(12): 2783-2792. doi: 10.1364/JOSAB.13.002783
|
[27] |
Siders C W, Siders J L W, Taylor A J, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 1998, 37(22): 5302-5305. doi: 10.1364/AO.37.005302
|
[28] |
Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 2012, 78(s4): 429-431.
|
[29] |
Yan Lixin, Du Qiang, Du Yingchao, et al. Ultrashort electron bunch train production by UV laser pulse stacking[C]//Proceedings of 1st International Particle Accelerator Conference. 2010: 3210-3212.
|
[30] |
You Yan, Yan Lixin, Du Yingchao, et al. High power THz source based on coherent radiation of picosecond relativistic electron bunch train[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 197-200.
|
[31] |
Su Xiaolu, Wang Dan, Yan Lixin, et al. Measurement of pre-bunched beam’s longitudinal form factor based on radiation from a tunable-gap undulator[J]. Review of Scientific Instruments, 2018, 89: 013304. doi: 10.1063/1.5010031
|
[32] |
Wang Dan, Yan Lixin, Du Yingchao, et al. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train[J]. Physical Review Accelerators and Beams, 2018, 21: 024403. doi: 10.1103/PhysRevAccelBeams.21.024403
|
[33] |
Wang Dan, Zhang Hongze, Tian Qili, et al. Twin-bunch compression via velocity bunching in a traveling wave accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 084403. doi: 10.1103/PhysRevAccelBeams.21.084403
|
[34] |
Musumeci P, Li Renkai, Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams[J]. Physical Review Letters, 2011, 106: 184801. doi: 10.1103/PhysRevLett.106.184801
|
[35] |
Musumeci P, Li Renkai, Roberts K G, et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 100701. doi: 10.1103/PhysRevSTAB.16.100701
|
[36] |
Zhang Zhen, Yan Lixin, Du Yingchao, et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation[J]. Physical Review Letters, 2016, 116: 184801. doi: 10.1103/PhysRevLett.116.184801
|
[37] |
Feng Hanqi, Zhou Zheng, Wu Yipeng, et al. Generation of tunable 10-mJ-level terahertz pulses through nonlinear plasma wakefield modulation[J]. Physical Review Applied, 2021, 15: 044032. doi: 10.1103/PhysRevApplied.15.044032
|
[38] |
Feng Hanqi, Yan Lixin, Wu Yipeng, et al. Near-ideal energy modulator for tunable THz pulse generation using sectioned hollow channel plasma system[J]. Physics of Plasmas, 2021, 28: 103101. doi: 10.1063/5.0062371
|
[39] |
Zhang Zhen, Yan Lixin, Du Yingchao, et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam[J]. Physical Review Accelerators and Beams, 2017, 20: 050701. doi: 10.1103/PhysRevAccelBeams.20.050701
|
[40] |
Gover A, Sprangle P. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers[J]. IEEE Journal of Quantum Electronics, 1981, 17(7): 1196-1215. doi: 10.1109/JQE.1981.1071257
|
[41] |
Liang Yifan, Du Yingchao, Su Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 2018, 112: 053501. doi: 10.1063/1.5009396
|
[42] |
Liang Yifan, Du Yingchao, Wang Dan, et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches[J]. Applied Physics Letters, 2018, 113: 171104. doi: 10.1063/1.5054583
|
[43] |
Su Xiaolu, Yan Lixin, Wang Dan, et al. Recent experimental results on high-peak-current electron bunch and bunch trains interacting with a THz undulator[C]//Proceedings of the 38th International Free Electron Laser Conference. 2017: 474-476.
|
[44] |
Su Xiaolu, Wang Dan, Tian Qili, et al. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU[J]. Journal of Instrumentation, 2018, 13: C01020. doi: 10.1088/1748-0221/13/01/C01020
|
[45] |
Antipov S, Baryshev S V, Kostin R, et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide[J]. Applied Physics Letters, 2016, 109: 142901. doi: 10.1063/1.4963762
|
[46] |
Wang Dan, Su Xiaolu, Du Yingchao, et al. Non-perturbing THz generation at the Tsinghua University Accelerator Laboratory 31 MeV electron beamline[J]. Review of Scientific Instruments, 2018, 89: 093301. doi: 10.1063/1.5042006
|
[47] |
Wang Dan, Su Xiaolu, Tian Qili, et al. Preliminary results on the resonant excitation of THz wakefield in a multi-mode dielectric loaded waveguide by bunch train[C]//Proceedings of IPAC. 2017: 3426-3428.
|
[48] |
Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z
|
[49] |
Yu Zijia, Zhang Liwen, Liu Weihao, et al. Coherent terahertz emission using metasurfaces to intercept a flat electron beam[J]. Physical Review Applied, 2022, 17: 014038. doi: 10.1103/PhysRevApplied.17.014038
|
[50] |
Kaminer I, Kooi S E, Shiloh R, et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder[J]. Physical Review X, 2017, 7: 011003.
|
[51] |
Liu Wenxin, Huang Wenhui, Du Yingchao, et al. Terahertz coherent transition radiation based on an ultrashort electron bunching beam[J]. Chinese Physics B, 2011, 20: 074102. doi: 10.1088/1674-1056/20/7/074102
|
[52] |
Wang Wei, Du Yingchao, Yan Lixin, et al. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches[J]. Physical Review Accelerators and Beams, 2017, 20: 112801. doi: 10.1103/PhysRevAccelBeams.20.112801
|
[53] |
Tian Qili, Du Yingchao, Xu Hanxun, et al. Single-shot spatial-temporal electric field measurement of intense terahertz pulses from coherent transition radiation[J]. Physical Review Accelerators and Beams, 2020, 23: 102802. doi: 10.1103/PhysRevAccelBeams.23.102802
|
[54] |
Li Qian, Stoica V A, Paściak M, et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 2021, 592(7854): 376-380. doi: 10.1038/s41586-021-03342-4
|
[55] |
Disa A S, Nova T F, Cavalleri A. Engineering crystal structures with light[J]. Nature Physics, 2021, 17(10): 1087-1092. doi: 10.1038/s41567-021-01366-1
|
[56] |
Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1
|
[57] |
Baldini E, Belvin C A, Rodriguez-Vega M, et al. Discovery of the soft electronic modes of the trimeron order in magnetite[J]. Nature Physics, 2020, 16(5): 541-545. doi: 10.1038/s41567-020-0823-y
|
[58] |
Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
|
[59] |
Kurihara T, Watanabe H, Nakajima M, et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field[J]. Physical Review Letters, 2018, 120: 107202. doi: 10.1103/PhysRevLett.120.107202
|
[60] |
Maag T, Bayer A, Baierl S, et al. Coherent cyclotron motion beyond Kohn’s theorem[J]. Nature Physics, 2016, 12(2): 119-123. doi: 10.1038/nphys3559
|
[61] |
Su Xiaolu, Yan Lixin, Du Yingchao, et al. Monitoring of electron bunch length by using Terahertz coherent transition radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 402: 157-161. doi: 10.1016/j.nimb.2017.03.016
|
[62] |
Wang Dan, Su Xiaolu, Yan Lixin, et al. Phase control with two-beam interferometry method in a terahertz dielectric Wakefield accelerator[J]. Applied Physics Letters, 2017, 111: 174102. doi: 10.1063/1.4999959
|
[63] |
Hanuka A, Emma C, Maxwell T, et al. Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics[J]. Scientific Reports, 2021, 11: 2945. doi: 10.1038/s41598-021-82473-0
|
[64] |
Konoplev I V, Doucas G, Harrison H, et al. Single shot, nondestructive monitor for longitudinal subpicosecond bunch profile measurements with femtosecond resolution[J]. Physical Review Accelerators and Beams, 2021, 24: 022801. doi: 10.1103/PhysRevAccelBeams.24.022801
|
[65] |
Xu Hanxun, Yan Lixin, Du Yingchao, et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 2021, 15(6): 426-430. doi: 10.1038/s41566-021-00779-x
|
[1] | Jiang Jinbo, Ren Yingjie, Li Yi, Zhang Jiaxing, Zhao Xin, Xu Lin, Ouyang Shanchuan. Research on waveform optimization for quasi-square wave pulse source based on PFN-Marx[J]. High Power Laser and Particle Beams, 2025, 37(3): 035008. doi: 10.11884/HPLPB202537.240315 |
[2] | Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, Zhou Wei, Zhang Bo, Tian Xiaocheng, Zhang Kun. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35(8): 082001. doi: 10.11884/HPLPB202335.220320 |
[3] | Lu Xicheng, Qiu Yang, Jiang Ling, Wang Haibo, Tian Jin, Guo Xinwei. Time reversal cavity path and its influence on signal to noise ratio[J]. High Power Laser and Particle Beams, 2021, 33(12): 123006. doi: 10.11884/HPLPB202133.210171 |
[4] | Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30(9): 095001. doi: 10.11884/HPLPB201830.170325 |
[5] | Zhong Xuanming, Liao Cheng. Spatial power combining algorithm based on space-frequency time-reversal technology[J]. High Power Laser and Particle Beams, 2016, 28(11): 113004. doi: 10.11884/HPLPB201628.160123 |
[6] | Wang Qiushi, Luo Jirun, Peng Shuyuan. Optimization of distributed-loss circuit of gyrotron traveling wave amplifier using multi-objective genetic algorithm[J]. High Power Laser and Particle Beams, 2015, 27(09): 093004. doi: 10.11884/HPLPB201527.093004 |
[7] | Yang Yang, Long Yunfei, Wu Wei, Yang Xiaomin, Liu Kai. Eliminating phase error caused by multi-path effect for phase measuring profilometry[J]. High Power Laser and Particle Beams, 2015, 27(04): 041013. doi: 10.11884/HPLPB201527.041013 |
[8] | Zhang Meng, Liao Lang. Optimization design of photo-injector using genetic algorithm[J]. High Power Laser and Particle Beams, 2014, 26(02): 025104. doi: 10.3788/HPLPB201426.025104 |
[9] | Lei Dechuan, Chen Hao, Wang Yuan, Zhang Chengxin, Chen Yunbin, Hu Dongcai. Accelerating simultaneous algebraic reconstruction technique by multi CUDA-enabled GPU[J]. High Power Laser and Particle Beams, 2013, 25(09): 2418-2422. doi: 10.3788/HPLPB20132509.2418 |
[10] | Yang Chengwu, Liu Wenqing, Zhang Yujun. Algorithm for retrieving vertical visibility of laser diode ceilometer[J]. High Power Laser and Particle Beams, 2012, 24(02): 307-311. doi: 10.3788/HPLPB20122402.0307 |
[11] | chen bo, cheng chengqi, guo shide, pu guoliang, geng zexun. Unsymmetrical multi-limit iterative blind deconvolution algorithm for adaptive optics image restoration[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[12] | zhang yunfei, he jianguo, wang yajun, luo lili, ji fang, huang wen. Analysis of dwell time algorithm based on optimization theory for computer controlled optical surfacing[J]. High Power Laser and Particle Beams, 2011, 23(12): 17-18. |
[13] | zhang yan, yang chunping, guo jing, kang meiling, wu jian. Spectrum extraction mode for Fourier telescopy in laboratory[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- . |
[14] | li xiangqiang, liu qingxiang, zhang jianqiong, zhao liu. Design and experiment of S-band multiport radial line power divider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- . |
[15] | tang lei, shu zhifeng, dong jihui, yue bin, shen fahua, dong jingjing, sun dongsong. Measurement of slant visibility and its iteration method with diode-laser lidar[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[16] | fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[17] | han dao-wen, liu wen-qing, zhang yu-jun, liu jian-guo, lu yi-huai, zhao nan-jing. Memorable glide window integral algorithm for retrieving cloud height[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- . |
[18] | zeng fa, tan qiao-feng, wei xiao-feng, xiang yong, yan ying-bai, jin guo-fan. High precision reconstruction of distorted wavefront in high power laser system[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- . |
[19] | zhang wei, zhang xiao-bo, shu fang-jie, li yong-ping. Design of diffractive optical elements by step iterative algorithm[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- . |
[20] | li da-hai, zhao xiao-feng, chen huai-xin, chen zhen-pei, chen bo, jing feng. Algorithm study of wavefront reconstruction based on the cyclic radial shear interferometer[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- . |
1. | 唐文翰. 多光缆的光纤通信信号多路传输系统. 电子制作. 2019(12): 3-4+29 . ![]() | |
2. | 向波,张裔智. 基于最低能耗约束的光纤网络通信优化模型设计. 激光杂志. 2018(04): 148-151 . ![]() | |
3. | 王冠,陈辉,李宁. 多光缆的光纤通信信号多路传输系统. 激光杂志. 2018(08): 178-182 . ![]() | |
4. | 钟选明,廖成. 基于空频时间反演的空间功率合成技术. 强激光与粒子束. 2016(11): 85-88 . ![]() |