Citation: | Yan Lixin, Liu Zhuoyuan. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34: 104012. doi: 10.11884/HPLPB202234.220134 |
[1] |
Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 2013, 7(9): 680-690. doi: 10.1038/nphoton.2013.184
|
[2] |
Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 2017, 16(11): 1077-1088. doi: 10.1038/nmat5017
|
[3] |
Baierl S, Hohenleutner M, Kampfrath T, et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11): 715-718. doi: 10.1038/nphoton.2016.181
|
[4] |
Jin Zuanming, Tkach A, Casper F, et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes[J]. Nature Physics, 2015, 11(9): 761-766. doi: 10.1038/nphys3384
|
[5] |
Fleischer S, Zhou Yan, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 2011, 107: 163603. doi: 10.1103/PhysRevLett.107.163603
|
[6] |
Lu Jian, Li Xian, Hwang H Y, et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves[J]. Physical Review Letters, 2017, 118: 207204. doi: 10.1103/PhysRevLett.118.207204
|
[7] |
Zhang Xicheng, Xu Jingzhou. Introduction to THz wave photonics[M]. New York: Springer, 2010.
|
[8] |
Horiuchi N. Bright terahertz sources[J]. Nature Photonics, 2013, 7(9): 670-671. doi: 10.1038/nphoton.2013.231
|
[9] |
Wen Xiaodong, Huang Senlin, Lin Lin, et al. Superradiant THz undulator radiation source based on a superconducting photo-injector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820: 75-79.
|
[10] |
Zhao Gang, Huang Senlin, Qin Weilun, et al. Tunable high-power terahertz free electron laser amplifier[C]//Proceedings of FEL. 2015: 305-307.
|
[11] |
Zhao Gang, Zhao Sheng, Huang Senlin, et al. Strong electron density modulation with a low-power THz source for generating THz superradiant undulator radiation[J]. Physical Review Accelerators and Beams, 2019, 22: 060701. doi: 10.1103/PhysRevAccelBeams.22.060701
|
[12] |
Zhu Juanfeng, Du Chaohai, Li Fanhong, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 2019, 7: 181184-181190. doi: 10.1109/ACCESS.2019.2938270
|
[13] |
Liang Linbo, Liu Weihao, Jia Qika, et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches[J]. Physics of Plasmas, 2019, 26: 013102. doi: 10.1063/1.5064865
|
[14] |
Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse[J]. Physical Review Accelerators and Beams, 2020, 23: 020704. doi: 10.1103/PhysRevAccelBeams.23.020704
|
[15] |
Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Tuning electron bunch with a longitudinally shaped laser to generate half-cycle terahertz radiation pulse[J]. Journal of Instrumentation, 2021, 16: P08019. doi: 10.1088/1748-0221/16/08/P08019
|
[16] |
Wu Dai, Li Ming, Yang Xinfan, et al. First lasing of the CAEP THz FEL facility driven by a superconducting accelerator[J]. Journal of Physics: Conference Series, 2018, 1067: 032010. doi: 10.1088/1742-6596/1067/3/032010
|
[17] |
Wu Dai, Zhou K, Yan L G, et al. Design of high-repetition terahertz super-radiation based on CAEP THz FEL superconducting beamline[C]//Proceedings of the 39th Free Electron Laser Conference. 2019: 73-76.
|
[18] |
Liu Xu, Liu Kaifeng, Qin Bin, et al. Optical alignment and tuning system for the HUST THz-FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 837: 58-62.
|
[19] |
Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102
|
[20] |
Svidzinsky A A, Yuan Luqi, Scully M O. Quantum amplification by superradiant emission of radiation[J]. Physical Review X, 2013, 3: 041001.
|
[21] |
Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 1954, 93(1): 99-110. doi: 10.1103/PhysRev.93.99
|
[22] |
Gover A, Ianconescu R, Friedman A, et al. Superradiant and stimulated-superradiant emission of bunched electron beams[J]. Reviews of Modern Physics, 2019, 91: 035003. doi: 10.1103/RevModPhys.91.035003
|
[23] |
Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(1): S70-S74.
|
[24] |
Wang Dan, Yan Lixin, Du Yingchao, et al. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching[J]. Review of Scientific Instruments, 2013, 84: 022704. doi: 10.1063/1.4790430
|
[25] |
Yan Lixin, Du Qiang, Du Yingchao, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637(1): S127-S129.
|
[26] |
Weling A S, Auston D H. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space[J]. Journal of the Optical Society of America B, 1996, 13(12): 2783-2792. doi: 10.1364/JOSAB.13.002783
|
[27] |
Siders C W, Siders J L W, Taylor A J, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 1998, 37(22): 5302-5305. doi: 10.1364/AO.37.005302
|
[28] |
Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 2012, 78(s4): 429-431.
|
[29] |
Yan Lixin, Du Qiang, Du Yingchao, et al. Ultrashort electron bunch train production by UV laser pulse stacking[C]//Proceedings of 1st International Particle Accelerator Conference. 2010: 3210-3212.
|
[30] |
You Yan, Yan Lixin, Du Yingchao, et al. High power THz source based on coherent radiation of picosecond relativistic electron bunch train[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 197-200.
|
[31] |
Su Xiaolu, Wang Dan, Yan Lixin, et al. Measurement of pre-bunched beam’s longitudinal form factor based on radiation from a tunable-gap undulator[J]. Review of Scientific Instruments, 2018, 89: 013304. doi: 10.1063/1.5010031
|
[32] |
Wang Dan, Yan Lixin, Du Yingchao, et al. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train[J]. Physical Review Accelerators and Beams, 2018, 21: 024403. doi: 10.1103/PhysRevAccelBeams.21.024403
|
[33] |
Wang Dan, Zhang Hongze, Tian Qili, et al. Twin-bunch compression via velocity bunching in a traveling wave accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 084403. doi: 10.1103/PhysRevAccelBeams.21.084403
|
[34] |
Musumeci P, Li Renkai, Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams[J]. Physical Review Letters, 2011, 106: 184801. doi: 10.1103/PhysRevLett.106.184801
|
[35] |
Musumeci P, Li Renkai, Roberts K G, et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 100701. doi: 10.1103/PhysRevSTAB.16.100701
|
[36] |
Zhang Zhen, Yan Lixin, Du Yingchao, et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation[J]. Physical Review Letters, 2016, 116: 184801. doi: 10.1103/PhysRevLett.116.184801
|
[37] |
Feng Hanqi, Zhou Zheng, Wu Yipeng, et al. Generation of tunable 10-mJ-level terahertz pulses through nonlinear plasma wakefield modulation[J]. Physical Review Applied, 2021, 15: 044032. doi: 10.1103/PhysRevApplied.15.044032
|
[38] |
Feng Hanqi, Yan Lixin, Wu Yipeng, et al. Near-ideal energy modulator for tunable THz pulse generation using sectioned hollow channel plasma system[J]. Physics of Plasmas, 2021, 28: 103101. doi: 10.1063/5.0062371
|
[39] |
Zhang Zhen, Yan Lixin, Du Yingchao, et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam[J]. Physical Review Accelerators and Beams, 2017, 20: 050701. doi: 10.1103/PhysRevAccelBeams.20.050701
|
[40] |
Gover A, Sprangle P. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers[J]. IEEE Journal of Quantum Electronics, 1981, 17(7): 1196-1215. doi: 10.1109/JQE.1981.1071257
|
[41] |
Liang Yifan, Du Yingchao, Su Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 2018, 112: 053501. doi: 10.1063/1.5009396
|
[42] |
Liang Yifan, Du Yingchao, Wang Dan, et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches[J]. Applied Physics Letters, 2018, 113: 171104. doi: 10.1063/1.5054583
|
[43] |
Su Xiaolu, Yan Lixin, Wang Dan, et al. Recent experimental results on high-peak-current electron bunch and bunch trains interacting with a THz undulator[C]//Proceedings of the 38th International Free Electron Laser Conference. 2017: 474-476.
|
[44] |
Su Xiaolu, Wang Dan, Tian Qili, et al. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU[J]. Journal of Instrumentation, 2018, 13: C01020. doi: 10.1088/1748-0221/13/01/C01020
|
[45] |
Antipov S, Baryshev S V, Kostin R, et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide[J]. Applied Physics Letters, 2016, 109: 142901. doi: 10.1063/1.4963762
|
[46] |
Wang Dan, Su Xiaolu, Du Yingchao, et al. Non-perturbing THz generation at the Tsinghua University Accelerator Laboratory 31 MeV electron beamline[J]. Review of Scientific Instruments, 2018, 89: 093301. doi: 10.1063/1.5042006
|
[47] |
Wang Dan, Su Xiaolu, Tian Qili, et al. Preliminary results on the resonant excitation of THz wakefield in a multi-mode dielectric loaded waveguide by bunch train[C]//Proceedings of IPAC. 2017: 3426-3428.
|
[48] |
Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z
|
[49] |
Yu Zijia, Zhang Liwen, Liu Weihao, et al. Coherent terahertz emission using metasurfaces to intercept a flat electron beam[J]. Physical Review Applied, 2022, 17: 014038. doi: 10.1103/PhysRevApplied.17.014038
|
[50] |
Kaminer I, Kooi S E, Shiloh R, et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder[J]. Physical Review X, 2017, 7: 011003.
|
[51] |
Liu Wenxin, Huang Wenhui, Du Yingchao, et al. Terahertz coherent transition radiation based on an ultrashort electron bunching beam[J]. Chinese Physics B, 2011, 20: 074102. doi: 10.1088/1674-1056/20/7/074102
|
[52] |
Wang Wei, Du Yingchao, Yan Lixin, et al. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches[J]. Physical Review Accelerators and Beams, 2017, 20: 112801. doi: 10.1103/PhysRevAccelBeams.20.112801
|
[53] |
Tian Qili, Du Yingchao, Xu Hanxun, et al. Single-shot spatial-temporal electric field measurement of intense terahertz pulses from coherent transition radiation[J]. Physical Review Accelerators and Beams, 2020, 23: 102802. doi: 10.1103/PhysRevAccelBeams.23.102802
|
[54] |
Li Qian, Stoica V A, Paściak M, et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 2021, 592(7854): 376-380. doi: 10.1038/s41586-021-03342-4
|
[55] |
Disa A S, Nova T F, Cavalleri A. Engineering crystal structures with light[J]. Nature Physics, 2021, 17(10): 1087-1092. doi: 10.1038/s41567-021-01366-1
|
[56] |
Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1
|
[57] |
Baldini E, Belvin C A, Rodriguez-Vega M, et al. Discovery of the soft electronic modes of the trimeron order in magnetite[J]. Nature Physics, 2020, 16(5): 541-545. doi: 10.1038/s41567-020-0823-y
|
[58] |
Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
|
[59] |
Kurihara T, Watanabe H, Nakajima M, et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field[J]. Physical Review Letters, 2018, 120: 107202. doi: 10.1103/PhysRevLett.120.107202
|
[60] |
Maag T, Bayer A, Baierl S, et al. Coherent cyclotron motion beyond Kohn’s theorem[J]. Nature Physics, 2016, 12(2): 119-123. doi: 10.1038/nphys3559
|
[61] |
Su Xiaolu, Yan Lixin, Du Yingchao, et al. Monitoring of electron bunch length by using Terahertz coherent transition radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 402: 157-161. doi: 10.1016/j.nimb.2017.03.016
|
[62] |
Wang Dan, Su Xiaolu, Yan Lixin, et al. Phase control with two-beam interferometry method in a terahertz dielectric Wakefield accelerator[J]. Applied Physics Letters, 2017, 111: 174102. doi: 10.1063/1.4999959
|
[63] |
Hanuka A, Emma C, Maxwell T, et al. Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics[J]. Scientific Reports, 2021, 11: 2945. doi: 10.1038/s41598-021-82473-0
|
[64] |
Konoplev I V, Doucas G, Harrison H, et al. Single shot, nondestructive monitor for longitudinal subpicosecond bunch profile measurements with femtosecond resolution[J]. Physical Review Accelerators and Beams, 2021, 24: 022801. doi: 10.1103/PhysRevAccelBeams.24.022801
|
[65] |
Xu Hanxun, Yan Lixin, Du Yingchao, et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 2021, 15(6): 426-430. doi: 10.1038/s41566-021-00779-x
|