Wang Kai, Lü Xueyang, Wu Kunlin, et al. Effects of different sequential neutron/gamma irradiation on current gain of bipolar devices[J]. High Power Laser and Particle Beams, 2020, 32: 044001. doi: 10.11884/HPLPB202032.190333
Citation: Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003. doi: 10.11884/HPLPB202234.220137

Preliminary physics design of the Hefei Advanced Light Facility storage ring

doi: 10.11884/HPLPB202234.220137
  • Received Date: 2022-05-02
  • Rev Recd Date: 2022-06-14
  • Available Online: 2022-06-17
  • Publish Date: 2022-08-22
  • The Hefei Advanced Light Facility (HALF) is a soft X-ray and VUV diffraction-limited storage ring light source, and the construction of HALF has just been approved by the Chinese government. The electron beam energy of the HALF storage ring is 2.2 GeV; the circumference is 480 m; the natural beam emittance is 86 pm·rad; and there are 20 long and 20 short straight sections in total. This paper will report the physics design progress of the HALF storage ring, including lattice design and optimization, simulation and calculation of beam injection and collective effects.
  • [1]
    Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 518-535.
    [2]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 843-855.
    [3]
    Li Weimin, Wang Lin, Feng Guangyao, et al. The concept of Hefei Advanced Light Source (HALS)[C]//Proceedings of EPAC08. 2008: 2136-2138.
    [4]
    Wang Lin, Feng Guangyao, Zhang Shancai, et al. The lattice design of Hefei advanced light source (HALS) storage ring[C]//Proceedings of EPAC08. 2008: 2142-2144.
    [5]
    Wang Lin, Li Weimin, Feng Guangyao, et al. The upgrade project of Hefei light source (HLS)[C]//Proceedings of IPAC’10. 2010: 2588-2590.
    [6]
    Bai Zhenghe, Yang Penghui, Li Weimin, et al. Design study for the first version of the HALS lattice[C]//Proceedings of IPAC2017. 2017: 2713-2715.
    [7]
    Bai Zhenghe, Wang Lin. Study of multi-bend achromat lattices for the HALS diffraction-limited storage ring[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 25-27.
    [8]
    Bai Zhenghe, Yang Penghui, Yang Zihui, et al. Design of the second version of the HALS storage ring lattice[C]//9th International Particle Accelerator Conference. 2018: 4601-4604.
    [9]
    Bai Zhenghe, Wang Lin. Super-period multi-bend achromat lattice with interleaved dispersion bumps for the HALS storage ring[C]//9th International Particle Accelerator Conference. 2018: 3597-3599.
    [10]
    Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//10th International Particle Accelerator Conference. 2019: 1495-1497.
    [11]
    Bai Zhenghe, Liu Gangwen, Li Wei, et al. Super-period locally symmetric lattices for designing diffraction-limited storage rings[C]//10th International Particle Accelerator Conference. 2019: 1498-1500.
    [12]
    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//12th International Particle Accelerator Conference. 2021: 407-409.
    [13]
    Einfeld D, Plesko M, Schaper J. First multi-bend achromat lattice consideration[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 856-861.
    [14]
    Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the E. S. R. F. [C]//Proceedings of IPAC2013. 2013: 79-81.
    [15]
    Borland M, Sun Y, Sajaev V, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of NAPAC2016. 2016: 877-880.
    [16]
    Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [17]
    Alekou A, Bartolini R, Carmignani N, et al. Study of a double triple bend achromat (DTBA) lattice for a 3 GeV light source[C]//Proceedings of IPAC2016. 2016: 407-409.
    [18]
    Xu Jianhao, Yang Penghui, Liu Gangwen, et al. Constraint handling in constrained optimization of a storage ring multi-bend-achromat lattice[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164890. doi: 10.1016/j.nima.2020.164890
    [19]
    Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705
    [20]
    He Tianlong, Bai Zhenghe. Graphics-processing-unit-accelerated simulation for longitudinal beam dynamics of arbitrary bunch trains in electron storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 104401. doi: 10.1103/PhysRevAccelBeams.24.104401
    [21]
    He Tianlong, Li Weiwei, Bai Zhenghe, et al. Periodic transient beam loading effect with passive harmonic cavities in electron storage rings[J]. Physical Review Accelerators and Beams, 2022, 25: 024401. doi: 10.1103/PhysRevAccelBeams.25.024401
  • Relative Articles

    [1]Zhang Liaoyuan, Sun Shuai, Wang Xiaohu, Li Zeren. Experimental study on characteristic spectra and temperature properties of spark discharge plasma[J]. High Power Laser and Particle Beams, 2024, 36(8): 082002. doi: 10.11884/HPLPB202436.240059
    [2]he yiguang, wang zhao, liang jing, gao shuang, tian baoxian, tang xiuzhang. Thermophysical properties of helium using molecular dynamics simulations[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [3]meng xian, li teng, pan wenxia, chen xi, wu chengkang. Temperature measurements of laminar argon plasma jet[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [4]yang guohong, zhang jiyan, wu zeqing, ding yongkun, yang jiamin, hu xin, li jun. Measurement of time-resolved electron temperature of plasmas for Shenguang Ⅱ hohlraum[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [5]dai yang, wu weidong, gao yingxue, ge fangfang, huang jing, wang haiping, ma tingting. Langmuir probe diagnosis of hydrogen plasma induced by helicon-wave under low pressure[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [6]yang xi, wang feng. Structure and thermodynamic properties of ZrH2[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [7]lei jiehong, xing pifeng, tang yongjian, zhang yunjuan. Thermodynamic properties of LiX(X=H, D, T) system investigated by density-functional theory[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [8]li jing, zhang jian-qiu, meng xiang-ru. Temperature and mechanics effect measurement of plasma induced by laser ablating hard aluminum[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [9]ding sheng, wang jian-guo, liu feng, shu qing-bang, wang yu-heng. Thermal-mechanical effects on rotating internally pressured cylindrical shell irradiated by laser beam[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [10]hu hao, tu bo, jiang jian-feng, zhou tang-jian, cui ling-ling, tang chun, cai zhen. Numerical simulation of thermodynamics in laser medium for heat capacity laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [11]duan bin, li yue-ming, fang quan-yu, zhang ji-yan. Calculation of temperature and density of plasmas in target pellet of ICF experiment[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [12]chen zhuo-tian, zhao jun-yu, fang zi-shen, yang li. Effective range of electron temperature measured by infrared Nd:glass laser scattering apparatus[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [13]zhang ji yan, yang jia min, zheng zhi jian, yang guo hong, ding yao nan, zhang wen hai, wang yao mei, li jun. Timeresolved diagnosis of the electron temperature of laserproduced aluminum plasma[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
    [14]chen lin, sun cheng-wei, jiang wei, feng shu-ping, wu shou-dong, yao bin, li ye, xu min. Influence of the plasma source parameters on the performances of long-conduction-time plasma opening switch[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [15]xu wei, wan bao-nian. Vibration mirror for measurement of plasma ion temperature[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [16]chen bo, zheng zhi-jian, ding yong-kun, li san-wei, wang yao-mei. Observation on spatial character of plasmas electron temperature for Mg/Al dotted targets by isoelectronic line ratios[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
    [17]liu zhan-jun, zheng jian, liu wan-dong, yu chang-xuan, zheng zhi-jian. An analytical approach to dispersion relation for ion-acoustic waves in two-species plasmas[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
    [18]le xiao-yun, zhao wei-jiang, yan sa, han bao-xi, xiang wei. Calculation of thermal-mechanical effects on the surface of metallic targets irradiated by intense pulsed ion beams[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
    [19]zhang xiong-jun, lu jing-ping, zheng kui-xing, zheng jian-gang, dong yun, feng bin, zhang xiao-min. Performance diagnostics for plasma electrode Pockelscell electron-optical switches[J]. High Power Laser and Particle Beams, 2000, 12(08): 0- .
    [20]1 xu wei, wan baonian. MEASUREMENT OF PLASMA ION TEMPERATUREAND ROTATION VELOCITY[J]. High Power Laser and Particle Beams, 1999, 11(01): 0- .
  • Cited by

    Periodical cited type(2)

    1. 韩星,王永琴,曾娅秋,刘宇,粟嘉伟,林珑君. 双极晶体管空间辐射效应的研究进展. 环境技术. 2024(07): 188-194 .
    2. 曾超,许献国,钟乐. 抗辐射电子学研究综述. 太赫兹科学与电子信息学报. 2023(04): 452-471 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.3 %FULLTEXT: 23.3 %META: 74.8 %META: 74.8 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %[]: 0.1 %[]: 0.1 %上海: 0.2 %上海: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 27.3 %北京: 27.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.2 %宿迁: 0.2 %崇左: 0.1 %崇左: 0.1 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 0.8 %张家口: 0.8 %成都: 0.2 %成都: 0.2 %扬州: 0.5 %扬州: 0.5 %新乡: 0.4 %新乡: 0.4 %普洱: 0.1 %普洱: 0.1 %杭州: 1.6 %杭州: 1.6 %武汉: 0.1 %武汉: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 0.1 %深圳: 0.1 %温州: 0.4 %温州: 0.4 %漯河: 2.1 %漯河: 2.1 %玉林: 0.4 %玉林: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 15.0 %芒廷维尤: 15.0 %芝加哥: 0.2 %芝加哥: 0.2 %西宁: 39.7 %西宁: 39.7 %西安: 0.3 %西安: 0.3 %贵港: 0.1 %贵港: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.0 %郑州: 2.0 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIndia[]上海中山临汾丹东北京北海十堰南京南宁台州合肥呼和浩特嘉兴天津宣城宿迁崇左常州平顶山广州弗吉尼亚州张家口成都扬州新乡普洱杭州武汉淮安深圳温州漯河玉林秦皇岛绵阳芒廷维尤芝加哥西宁西安贵港运城连云港邯郸郑州重庆铁岭长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (2285) PDF downloads(278) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return