Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003. doi: 10.11884/HPLPB202234.220137
Citation: Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003. doi: 10.11884/HPLPB202234.220137

Preliminary physics design of the Hefei Advanced Light Facility storage ring

doi: 10.11884/HPLPB202234.220137
  • Received Date: 2022-05-02
  • Rev Recd Date: 2022-06-14
  • Available Online: 2022-06-17
  • Publish Date: 2022-08-22
  • The Hefei Advanced Light Facility (HALF) is a soft X-ray and VUV diffraction-limited storage ring light source, and the construction of HALF has just been approved by the Chinese government. The electron beam energy of the HALF storage ring is 2.2 GeV; the circumference is 480 m; the natural beam emittance is 86 pm·rad; and there are 20 long and 20 short straight sections in total. This paper will report the physics design progress of the HALF storage ring, including lattice design and optimization, simulation and calculation of beam injection and collective effects.
  • loading
  • [1]
    Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 518-535.
    [2]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 843-855.
    [3]
    Li Weimin, Wang Lin, Feng Guangyao, et al. The concept of Hefei Advanced Light Source (HALS)[C]//Proceedings of EPAC08. 2008: 2136-2138.
    [4]
    Wang Lin, Feng Guangyao, Zhang Shancai, et al. The lattice design of Hefei advanced light source (HALS) storage ring[C]//Proceedings of EPAC08. 2008: 2142-2144.
    [5]
    Wang Lin, Li Weimin, Feng Guangyao, et al. The upgrade project of Hefei light source (HLS)[C]//Proceedings of IPAC’10. 2010: 2588-2590.
    [6]
    Bai Zhenghe, Yang Penghui, Li Weimin, et al. Design study for the first version of the HALS lattice[C]//Proceedings of IPAC2017. 2017: 2713-2715.
    [7]
    Bai Zhenghe, Wang Lin. Study of multi-bend achromat lattices for the HALS diffraction-limited storage ring[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 25-27.
    [8]
    Bai Zhenghe, Yang Penghui, Yang Zihui, et al. Design of the second version of the HALS storage ring lattice[C]//9th International Particle Accelerator Conference. 2018: 4601-4604.
    [9]
    Bai Zhenghe, Wang Lin. Super-period multi-bend achromat lattice with interleaved dispersion bumps for the HALS storage ring[C]//9th International Particle Accelerator Conference. 2018: 3597-3599.
    [10]
    Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//10th International Particle Accelerator Conference. 2019: 1495-1497.
    [11]
    Bai Zhenghe, Liu Gangwen, Li Wei, et al. Super-period locally symmetric lattices for designing diffraction-limited storage rings[C]//10th International Particle Accelerator Conference. 2019: 1498-1500.
    [12]
    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//12th International Particle Accelerator Conference. 2021: 407-409.
    [13]
    Einfeld D, Plesko M, Schaper J. First multi-bend achromat lattice consideration[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 856-861.
    [14]
    Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the E. S. R. F. [C]//Proceedings of IPAC2013. 2013: 79-81.
    [15]
    Borland M, Sun Y, Sajaev V, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of NAPAC2016. 2016: 877-880.
    [16]
    Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [17]
    Alekou A, Bartolini R, Carmignani N, et al. Study of a double triple bend achromat (DTBA) lattice for a 3 GeV light source[C]//Proceedings of IPAC2016. 2016: 407-409.
    [18]
    Xu Jianhao, Yang Penghui, Liu Gangwen, et al. Constraint handling in constrained optimization of a storage ring multi-bend-achromat lattice[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164890. doi: 10.1016/j.nima.2020.164890
    [19]
    Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705
    [20]
    He Tianlong, Bai Zhenghe. Graphics-processing-unit-accelerated simulation for longitudinal beam dynamics of arbitrary bunch trains in electron storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 104401. doi: 10.1103/PhysRevAccelBeams.24.104401
    [21]
    He Tianlong, Li Weiwei, Bai Zhenghe, et al. Periodic transient beam loading effect with passive harmonic cavities in electron storage rings[J]. Physical Review Accelerators and Beams, 2022, 25: 024401. doi: 10.1103/PhysRevAccelBeams.25.024401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (1896) PDF downloads(254) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return