Citation: | Qin Kaiwen, Yang Bo, Wang Ziming, et al. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156 |
[1] |
余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4):1-8 doi: 10.13832/j.jnpe.2019.04.0001
Yu Hongxing, Ma Yugao, Zhang Zhuohua, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8 doi: 10.13832/j.jnpe.2019.04.0001
|
[2] |
王傲, 申凤阳, 胡古, 等. 热管空间核反应堆电源的研究进展[J]. 核技术, 2020, 43:060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002
Wang Ao, Shen Fengyang, Hu Gu, et al. A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 2020, 43: 060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002
|
[3] |
McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reactors[R]. Los Alamos: Los Alamos National Laboratory, 2015.
|
[4] |
Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls: Idaho National Laboratory, 2017.
|
[5] |
Sterbentz J W, Werner J E, Hummel A J, et al. Preliminary assessment of two alternative core design concepts for the special purpose reactor[R]. Idaho Falls: Idaho National Laboratory, 2018.
|
[6] |
屈伸, 曹良志, 郑琪, 等. 热管堆高温数据库的制作及堆芯初步物理计算[J]. 现代应用物理, 2017, 8:041202 doi: 10.12061/j.issn.2095-6223.2017.041202
Qu Shen, Cao Liangzhi, Zheng Qi, et al. Development of high-temperature nuclear database and preliminary physical computation of a heat pipe reactor[J]. Modern Applied Physics, 2017, 8: 041202 doi: 10.12061/j.issn.2095-6223.2017.041202
|
[7] |
李冠兴, 周邦新, 肖岷, 等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学, 2019, 21(1):6-11
Li Guanxing, Zhou Bangxin, Xiao Min, et al. Overall development strategy of China’s new-generation nuclear fuel[J]. Strategic Study of CAE, 2019, 21(1): 6-11
|
[8] |
Fütterer M A, D’Agata E, Laurie M, et al. Next generation fuel irradiation capability in the High Flux Reactor Petten[J]. Journal of Nuclear Materials, 2009, 392(2): 184-191. doi: 10.1016/j.jnucmat.2009.03.030
|
[9] |
Greenquist I, Powers J J. Sensitivity and uncertainty of the IFR-1 BISON benchmark[R]. Oak Ridge: Oak Ridge National Laboratory, 2022.
|
[10] |
IAEA. Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data[M]. Vienna: IAEA, 2008: 92-110.
|
[11] |
Wang Kan, Li Zeguang, She Ding, et al. RMC—A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
|
[12] |
刘晓波, 胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-VIII. 0核数据库[J]. 强激光与粒子束, 2022, 34:026003 doi: 10.11884/HPLPB202234.210366
Liu Xiaobo, Hu Zehua. Monte Carlo calculation of critical benchmarking models for testing ENDF/B-VIII. 0 nuclear data[J]. High Power Laser and Particle Beams, 2022, 34: 026003 doi: 10.11884/HPLPB202234.210366
|
[13] |
胡赟, 徐銤. 快堆金属燃料的发展[J]. 原子能科学技术, 2008, 42(9):810-815
Hu Yun, Xu Mi. Development of metallic fuel for fast reactor[J]. Atomic Energy Science and Technology, 2008, 42(9): 810-815
|
[14] |
Gao Yucui, Cao Liangzhi, Yang Yongwei, et al. Physical study of an ultra-long-life small modular fast reactor loaded with U-Pu-Zr fuel[J]. Annals of Nuclear Energy, 2020, 142: 107390. doi: 10.1016/j.anucene.2020.107390
|
[15] |
Luzzi L, Cammi A, Di Marcello V, et al. Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor[J]. Nuclear Engineering and Design, 2014, 277: 173-187. doi: 10.1016/j.nucengdes.2014.06.032
|
[16] |
Liu Bin, Wang Kai, Tu Jing, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 2014, 64: 86-92. doi: 10.1016/j.anucene.2013.09.042
|
[17] |
Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
|