Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Qin Kaiwen, Yang Bo, Wang Ziming, et al. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156
Citation: Qin Kaiwen, Yang Bo, Wang Ziming, et al. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156

Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor

doi: 10.11884/HPLPB202234.220156
  • Received Date: 2022-05-16
  • Rev Recd Date: 2022-09-26
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • The heat pipe cooled reactor adopts the solid-state reactor design concept, and it has the characteristics of high power density, compact structure and high inherent safety. It has been extensively used for deep space exploration, deep sea exploration, remote areas electricity markets and other scenarios. Nuclear fuel is an important part of the heat pipe cooling reactor, different types of nuclear fuel will reflect different neutronics performance on the reactor burnup analysis. In this paper, based on the heat pipe cooled reactor INL Design A proposed by the Idaho National Laboratory (INL), the burnup calculation is done by selecting six nuclear fuels : UO2, (U0.9Pu0.1)O2, U-10Zr, U-8Pu-10Zr, UN and UC. The effects of different nuclear fuel and power levels on the burnup performance of heat pipe cooled reactor core were analyzed. The calculation results show that under the same core burnup depth (20.8 GW·d·t−1), the core loaded with U-8Pu-10Zr fuel requires the lowest 235U enrichment (9.8%), and has better U-Pu breeding. For the heat pipe cooling reactor with the core power of 5 MW, the presence of 241Pu in the fuel does not increase the core burnup depth, but leads to the increase of residual reactivity of the core and the yield of the secondary actinides nuclides (MAs) in the core end of life, which affects the safety and economy of the reactor. Therefore, for the low-power and long-life heat pipe cooled reactor loaded with Pu fuel, it is necessary to focus on the influence of 241Pu on the core burnup performance.
  • loading
  • [1]
    余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4):1-8 doi: 10.13832/j.jnpe.2019.04.0001

    Yu Hongxing, Ma Yugao, Zhang Zhuohua, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8 doi: 10.13832/j.jnpe.2019.04.0001
    [2]
    王傲, 申凤阳, 胡古, 等. 热管空间核反应堆电源的研究进展[J]. 核技术, 2020, 43:060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002

    Wang Ao, Shen Fengyang, Hu Gu, et al. A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 2020, 43: 060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002
    [3]
    McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reactors[R]. Los Alamos: Los Alamos National Laboratory, 2015.
    [4]
    Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [5]
    Sterbentz J W, Werner J E, Hummel A J, et al. Preliminary assessment of two alternative core design concepts for the special purpose reactor[R]. Idaho Falls: Idaho National Laboratory, 2018.
    [6]
    屈伸, 曹良志, 郑琪, 等. 热管堆高温数据库的制作及堆芯初步物理计算[J]. 现代应用物理, 2017, 8:041202 doi: 10.12061/j.issn.2095-6223.2017.041202

    Qu Shen, Cao Liangzhi, Zheng Qi, et al. Development of high-temperature nuclear database and preliminary physical computation of a heat pipe reactor[J]. Modern Applied Physics, 2017, 8: 041202 doi: 10.12061/j.issn.2095-6223.2017.041202
    [7]
    李冠兴, 周邦新, 肖岷, 等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学, 2019, 21(1):6-11

    Li Guanxing, Zhou Bangxin, Xiao Min, et al. Overall development strategy of China’s new-generation nuclear fuel[J]. Strategic Study of CAE, 2019, 21(1): 6-11
    [8]
    Fütterer M A, D’Agata E, Laurie M, et al. Next generation fuel irradiation capability in the High Flux Reactor Petten[J]. Journal of Nuclear Materials, 2009, 392(2): 184-191. doi: 10.1016/j.jnucmat.2009.03.030
    [9]
    Greenquist I, Powers J J. Sensitivity and uncertainty of the IFR-1 BISON benchmark[R]. Oak Ridge: Oak Ridge National Laboratory, 2022.
    [10]
    IAEA. Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data[M]. Vienna: IAEA, 2008: 92-110.
    [11]
    Wang Kan, Li Zeguang, She Ding, et al. RMC—A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [12]
    刘晓波, 胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-VIII. 0核数据库[J]. 强激光与粒子束, 2022, 34:026003 doi: 10.11884/HPLPB202234.210366

    Liu Xiaobo, Hu Zehua. Monte Carlo calculation of critical benchmarking models for testing ENDF/B-VIII. 0 nuclear data[J]. High Power Laser and Particle Beams, 2022, 34: 026003 doi: 10.11884/HPLPB202234.210366
    [13]
    胡赟, 徐銤. 快堆金属燃料的发展[J]. 原子能科学技术, 2008, 42(9):810-815

    Hu Yun, Xu Mi. Development of metallic fuel for fast reactor[J]. Atomic Energy Science and Technology, 2008, 42(9): 810-815
    [14]
    Gao Yucui, Cao Liangzhi, Yang Yongwei, et al. Physical study of an ultra-long-life small modular fast reactor loaded with U-Pu-Zr fuel[J]. Annals of Nuclear Energy, 2020, 142: 107390. doi: 10.1016/j.anucene.2020.107390
    [15]
    Luzzi L, Cammi A, Di Marcello V, et al. Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor[J]. Nuclear Engineering and Design, 2014, 277: 173-187. doi: 10.1016/j.nucengdes.2014.06.032
    [16]
    Liu Bin, Wang Kai, Tu Jing, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 2014, 64: 86-92. doi: 10.1016/j.anucene.2013.09.042
    [17]
    Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (813) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return